GT Neuro Seminar Series

*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************

Event Details
  • Date/Time:
    • Monday November 28, 2016 - Tuesday November 29, 2016
      11:00 am - 11:59 am
  • Location: Engineered Biosystems Building (EBB), Room 1005 - Atlanta, GA
  • Phone:
  • URL:
  • Email:
  • Fee(s):
    N/A
  • Extras:
Contact

Chris Rozell - faculty host

Summaries

Summary Sentence: "Biophysically Principled Modeling of Human MEG/EEG Signals Reveals Novel Mechanisms and Meaning of Brain Rhythms" - Stephanie Jones, Ph.D. - Brown University

Full Summary: No summary paragraph submitted.

“Biophysically Principled Modeling of Human MEG/EEG Signals Reveals Novel Mechanisms and Meaning of Brain Rhythms”

 

Stephanie Jones, Ph.D.
Associate Professor
Department of Neuroscience
Brown University

 

Magneto- and Electro-encephalography (MEG/EEG) are among the most powerful technologies to non-invasively record large-scale activity from humans with fine temporal and spatial resolution. These signals provide reliable markers of healthy cognitive function and disease processes. However, a major limitation is the difficulty in inferring the underlying cellular and network level activity that generates the recorded data. A cellular level understanding is necessary to design targeted 
treatments, via pharmacology or brain stimulation (e.g. TMS, tDCS), when these signals are disrupted in neuropathology. In this talk, I will discuss the use of biophysically principled computational neural models of MEG/EEG signals as a viable means to link brain mechanisms to function.  I will focus on low frequency beta rhythms (15-29Hz) prominent in MEG/EEG signals, which we have found predict sensory perception, are modulated with attention, and change with aging. I will 
describe how our MEG/EEG studies and model developments have led to novel hypothesis on the origin of beta rhythms and of their impact on sensory processing. Additionally, I will describe studies testing the model-derived predictions with invasive electrophysiological recordings in humans, monkeys and mice. In total, our integrated modeling and experimental approaches are providing unique insight into the mechanisms and meaning of human brain rhythms. 

This presentation can be seen via videoconference on the Emory Campus HSRB 

Related Links

Additional Information

In Campus Calendar
Yes
Groups

Parker H. Petit Institute for Bioengineering and Bioscience (IBB)

Invited Audience
Faculty/Staff, Undergraduate students, Graduate students
Categories
Seminar/Lecture/Colloquium
Keywords
go-NeuralEngineering, IBB
Status
  • Created By: Floyd Wood
  • Workflow Status: Published
  • Created On: Oct 31, 2016 - 8:24am
  • Last Updated: Apr 13, 2017 - 5:14pm