*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************
PhD Defense by
Advisor: Prof. Ben T. Zinn
2:00 PM, Wednesday, November 9, 2016
Montgomery Knight Building Room 317
Abstract
Jet-in-crossflow (JICF) fuel-injection is widely applied in modern jet-engines to provide rapid fuel-atomization and mixing. However, “classical” JICF places large amounts of fuel into the low-velocity region near the injector wall, which can cause flashback and fuel-coking on the wall. A nascent fuel-injection technique called Twin-Fluid (TF) JICF is being considered as a way to mitigate Classical-JICF’s shortcomings. In TF-JICF, air is co-injected around the fuel jet to modify its atomization and penetration characteristics. Designers expect TF-JICF to enhance the fuel’s penetration away from the wall (i.e., reduce near-wall fuel concentrations). However, the performance of TF-JICF is currently not well understood, especially at the high pressures found in jet-engines. This dissertation work addresses the knowledge gap by experimentally investigating a TF-JICF where liquid Jet-A fuel was co-injected with pressurized nitrogen into a crossflow of air. The crossflow and injection conditions were varied over wide ranges that cover those conditions reported in the available TF-JICF literature, as well as those expected for jet-engines. The resulting TF-JICF fuel sprays were imaged by shadowgraphy, and their penetrations, dispersions and atomization processes were analyzed.
For a fixed fuel flow-rate, different levels of air-injection velocities were found to cause different spray characteristics (see figure below). A mild injection of air inhibited the atomization of the initial fuel jet, thus reducing the near-wall fuel concentration and flashback/wall-coking risks. A very strong injection of air “propelled” the fuel very far away from the wall while also enhancing atomization. On the other hand, medium levels of air-injection were generally non-beneficial towards fuel-injector design. Four TF-JICF regimes were identified (i.e., Classical-JICF, Air-Assist JICF, Airblast JICF and Airblast Spray-in-Crossflow) based on these characteristics and their formation mechanisms.