*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************
Atlanta, GA | Posted: October 17, 2016
The explosive growth of data traffic from increasing number of digital and sensor devices, connected to the network, and the escalating demand for self-driving cars requiring both long-range vehicle-to-network and short-range vehicle-to-vehicle connectivity, has created a need for 10-100X increase in wireless data communication rates beyond current 4G LTE connectivity. This extreme traffic density requires high-frequency mobile bands, much beyond WLAN at 6 GHz, requiring mm-wave (e.g., 28-39 GHz and above) communications. Many challenges in achieving these goals such as those associated with system-level design, materials, processes, antennas and module integration must be addressed.
Traditional mm-wave packages are based on ceramic substrates. The high cost and low-integration limitations of ceramics have led to the evolution of organic packages. A fully-integrated antenna-in-package (AiP) for W-band phased-array system, with 64 dual-polarization antennas embedded in a multi-layer organic substrate, with SiGe transceiver dies that are flipchip-attached has been demonstrated by IBM. In addition, ultra-low loss organic substrates using Teflon and LCPs were explored with high gains and high bandwidth. The evolution of embedded and fan-out wafer level ball grid array package technology (eWLB) further enhanced the performance of mm-wave packages by eliminating the wirebonds, as demonstrated by Infineon technologies, with SiGe-BiCMOS technology. However, organic laminates and molding-compound based fan-outs are limited by the precision and tolerance of circuitry for mm-wave components.
In contrast to the above approaches for 5G and beyond, Georgia Tech and its industry partners are pioneering ultra-thin, panel-based glass fan-out (GFO) embedded technology. GFO offers many advantages such as low electrical loss, superior dimensional stability for precision circuitry, stability to high temperature and humidity, matched CTE to Si and other devices and availability in thin and large glass panels processed with Cu-through vias, similar in dimensions to TSVs and RDL wiring layers, and similar to BEOL on Si. The Georgia Tech approach leads to major design, material, process and 3D package architecture innovations.
Some of the key research innovations of the Georgia Tech 5G and beyond program include:
The 5G project is currently active in collaboration with many industry partners, including glass companies such as Corning Glass, Asahi Glass, and Schott Glass, supplying the ultra-thin glass panels; low-loss dielectric material suppliers such as Rogers; tool companies such as Ushio for precision lithography; Disco for planarization and dicing; Atotech for supplying the plating chemistry for advanced metallization processes; and end-users like Qualcomm.
About the Authors
Atom Watanabe is a PhD student under the advisement of Prof. Rao Tummala. His research focus is on EMI shielding and mm-wave module integration; atom@gatech.edu.
Prof. Manos Tentzeris, Ken Byers Professor in ECE Department, Georgia Tech, is the faculty lead for the mm-wave program; etentze@ece.gatech.edu.
Prof. Rao Tummala is the Joseph M. Pettit Chair Professor in ECE and MSE, and the Director of Georgia Tech’s 3D Systems Packaging Research Center (GT PRC); rao.tummala@ece.gatech.edu.
Dr. Raj Pulugurtha is a Research Professor and the Program Manager of Power and RF Module Programs; pm86@mail.gatech.edu.
Dr. Venky Sundaram is a Research Professor and the Program Manager of Glass Substrate Program; vs24@mail.gatech.edu.