*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************
Please note that this talk is held at noon on a Wednesday.
Algorithms & Randomness Center (ARC) and
Machine Learning Group present
ARC - ML Colloquium
Wednesday, November 9
Klaus 1116 East – Noon
Abstract:
We introduce the geodesic walk for sampling Riemannian manifolds and apply it to the problem of generating uniform random points from polytopes in R^n specified by m inequalities. The walk is a discrete-time simulation of a stochastic differential equation (SDE) on the Riemannian manifold. The resulting sampling algorithm for polytopes mixes in O*(mn^{3/4}) steps. This is the first walk that breaks the quadratic barrier for mixing in high dimension, improving on the previous best bound of O*(mn) by Kannan and Narayanan for the Dikin walk. We also show that each step of the geodesic walk (solving an ODE) can be implemented efficiently, thus improving the time complexity for sampling polytopes.