Machine Life Prognosticator

*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************

Contact
Barbara Christopher
Industrial and Systems Engineering
Contact Barbara Christopher
404.385.3102
Sidebar Content
No sidebar content submitted.
Summaries

Summary Sentence:

No summary sentence submitted.

Full Summary:

No summary paragraph submitted.

Industry Week - December 1, 2008
A Georgia Tech professor believes his machine models can more accurately predict the amount of remaining useful life of different mechanical devices, including electrical systems, than current sensor-based predictive methods. Nagi Gebraeel, an assistant professor in Georgia Tech's engineering school, has created stochastic models (measures of probability) to identify condition-based signals, which could be used to predict maintenance needs of critical components. Gebraeel says his tests can reduce total failure costs and expenses related to depletion of spare-parts inventory by 55%.
http://www.industryweek.com/ReadArticle.aspx?ArticleID=17756&SectionID=2

Additional Information

Groups

ISyE External News

Categories
Engineering, Research
Related Core Research Areas
No core research areas were selected.
Newsroom Topics
No newsroom topics were selected.
Keywords
No keywords were submitted.
Status
  • Created By: Barbara Christopher
  • Workflow Status: Published
  • Created On: Nov 30, 2008 - 8:00pm
  • Last Updated: Oct 7, 2016 - 11:06pm