Gigascale Integration Group Wins Best Paper Honors

*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************

Contact
Jackie Nemeth
School of Electrical and Computer Engineering
Contact Jackie Nemeth
404-894-2906
Sidebar Content
No sidebar content submitted.
Summaries

Summary Sentence:

GSI Group won two Best Paper Awards at recent conferences

Full Summary:

The Gigascale Integration Group, led by ECE Professor James D. Meindl, has won two Best Paper Awards

Media

  • (image/jpeg)

The Gigascale Integration Group, based in the School of Electrical and Computer Engineering (ECE), has won two best paper awards. The group is led by James D. Meindl, the Joseph M. Pettit Chair Professor in ECE and director of both the Microelectronics Research Center and Nanotechnology Research Center.

The group received the S.C. Sun Best Student Paper Award from the 2008 IEEE International Interconnect Technology Conference, which was held in San Francisco, Calif. last June. The award winning paper, "A 3D-IC technology with integrated microchannel cooling," was written by D. Sekar, C. King, B. Dang, T. Spencer, H. Thacker, P. Joseph, M. Bakir, and J. Meindl and was published in the Proc. IEEE Int. Interconnect Technol. Conf., pp. 13-15 in 2008.

The paper described compact physical modeling and wafer-level batch fabrication technologies of advanced cooling technologies for 3D stack of high-performance chips. In particular, this paper reports, for the first time, the integration of electrical through-silicon vias with monolithic microchannel heat sink in 3D stack. The demonstrated technologies enable the liquid cooling of each chip in the stack. The reduced thermal resistance offered by microchannel cooling enables substantial improvement of clock frequency as well as reduced power dissipation for each chip in the 3D stack.

Dr. Meindl's group also received the winning paper award of the Motorola Electronic Packaging Fellowship from the 2008 Electronic Components and Technology Conference (ECTC). The conference was held in Lake Buena Vista, Fla. The award winning paper, "3D stacking of chips with electrical and microfluidic I/O interconnects," was written by C. King, D. Sekar, M. Bakir, B. Dang, J. Pikarsky, and J. Meindl and was published in the Proc. Electronic Components and Technol. Conf., pp. 1-7 in 2008.

This paper described low-cost chip input/output interconnect and assembly technologies to enable the "routing" of electrical and fluidic networks in a 3D stack of chips. This is important because it enables, for the first time, the ability to deliver
a coolant from the system motherboard directly to each silicon die in the stack to reject heat. These technologies offer significant cost, form factor, and performance benefits over "typical" fluidic delivery methods.

Related Links

Additional Information

Groups

School of Electrical and Computer Engineering

Categories
Institute and Campus, Student and Faculty, Engineering, Nanotechnology and Nanoscience, Research
Related Core Research Areas
No core research areas were selected.
Newsroom Topics
No newsroom topics were selected.
Keywords
Gigascale Integration Group, James D. Meindl, School of Electrical and Computer Engineering
Status
  • Created By: Jackie Nemeth
  • Workflow Status: Published
  • Created On: Jun 4, 2009 - 8:00pm
  • Last Updated: Oct 7, 2016 - 11:02pm