PhD Defense by Aditi Misra

*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************

Event Details
  • Date/Time:
    • Thursday June 23, 2016 - Friday June 24, 2016
      9:00 am - 10:59 am
  • Location: Sustainable Education Building, 122
  • Phone:
  • URL:
  • Email:
  • Fee(s):
    N/A
  • Extras:
Contact
No contact information submitted.
Summaries

Summary Sentence: Mapping Bicyclist Route Choice Using Smartphone Based Crowdsourced Data

Full Summary: No summary paragraph submitted.

School of Civil and Environmental Engineering

 

Ph.D. Thesis Defense Announcement

Mapping Bicyclist Route Choice Using Smartphone Based Crowdsourced Data

By

Aditi Misra

 

Advisor:

Dr. Kari E. Watkins (CEE)

 

Committee Members:

  Dr. Patricia Mokhtarian(CEE), Dr. Jorge Laval(CEE), Dr. Chris LeDantec (Ivan Allen ), Dr. Bistra Dilkina ( CoC)

 

 

Date & Time: June 23rd, 2016, 9:00am

 

Location: Sustainable Education Building, 122

A major reason frequently cited for not adopting bicycling as a travel mode is a perceived lack of safety in facilities shared with high speed and volume traffic. To remedy the situation, ideally, all streets should be provided with separate bicycle facilities but agencies do not have enough funding nor enough right-of-way in many cases. Cyclists also differ widely in their perceptions of roadway safety and comfort and hence, possibly in their preference for infrastructure. To date, there are not enough data to understand cyclist preferences or how far the cyclists are willing to travel to access cycling facilities since bicyclists are a small and dispersed group and it is difficult to get data on their travel patterns through traditional traffic counts. Cycle Atlanta, a GPS based smartphone application (app) was developed at Georgia Tech in collaboration with the City of Atlanta to collect revealed preference route choice data of cyclists in Atlanta via crowdsourcing. This research used the collected data to (1) validate the popular classification of cyclists into different rider types based on their comfort and confidence while also modelling the underlying influence of socio-demographic attributes on self-perception of level of confidence and comfort; (2) develop a model to understand how far cyclists are willing to deviate from the shortest network distance based route and (3) design segmented route choice models for different types of cyclists based on their sociodemographics as well as their comfort and confidence level. In addition, a stated preference survey was analyzed to understand what factors influence the decision to use bicycle as mode of transportation. Finally, a data cleaning, curating, and map matching algorithm was developed as part of the research. This research, one of the first studies to use crowdsourced data to analyze cyclist behavior, is unique in its focus on the influence of socio-demographic and attitudinal makeup of cyclists on their decision to bicycle and their route choice. The results from this research provide valuable insight for future planning and policy decisions. First, female and senior cyclists are found to be in general low confidence, low comfort riders and they significantly differ in their route choice and infrastructure preference from their more confident counterparts. Second, the assumption that with more riding experience cyclists become confident enough to share the street with vehicular traffic, is not without its caveats. Although cyclists with more riding experience tend to see themselves as more confident riders, preference for separate infrastructure pervades all rider types, as does the negative influence of high speed and volume traffic. Third, cyclists are generally found to shy away from longer trips and hence, when faced with the trade-off between a significant detour and safety concerns, they may not make the trip itself. Therefore, having a connected network close to the shortest distance path is important in encouraging newer and low confidence bicyclists. This research provides a model that can be used to estimate acceptable deviation from any route based on road attributes and the cyclist characteristics.

 

Additional Information

In Campus Calendar
No
Groups

Graduate Studies

Invited Audience
Public
Categories
Other/Miscellaneous
Keywords
Phd Defense
Status
  • Created By: Tatianna Richardson
  • Workflow Status: Published
  • Created On: Jun 9, 2016 - 5:46am
  • Last Updated: Oct 7, 2016 - 10:17pm