Computer Simulations Shed Light on the Milky Way’s Missing Red Giants

*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************

Contact

Jason Maderer
National Media Relations
maderer@gatech.edu
404-660-2926

Sidebar Content
No sidebar content submitted.
Summaries

Summary Sentence:

Simulations provide test of why the center of the Milky Way has no visible older stars.

Full Summary:

Simulations investigate the possibility that red giants at the center of our galaxy were dimmed after they were stripped of 10s of percent of their mass millions of years ago during repeated collisions with an accretion disk.

Media
  • Simulation of Red Giant Star Traveling Through a Fragmenting Accretion Disk Simulation of Red Giant Star Traveling Through a Fragmenting Accretion Disk
    (YouTube Video)
  • Star Disk Collision Star Disk Collision
    (image/jpeg)
  • Blistering of the Star Blistering of the Star
    (image/jpeg)

New computer simulations from the Georgia Institute of Technology provide a conclusive test for a hypothesis of why the center of the Milky Way appears to be filled with young stars but has very few old ones. According to the theory, the remnants of older, red giant stars are still there — they just aren’t bright enough to be detected with telescopes.

The Georgia Tech simulations investigate the possibility that these red giants were dimmed after they were stripped of 10s of percent of their mass millions of years ago during repeated collisions with an accretion disk at the galactic center. The very existence of the young stars, seen in astronomical observations today, is an indication that such a gaseous accretion disk was present in the galactic center because the young stars are thought to have formed from it as recently as a few million years ago.

The study is published in the June edition of The Astrophysical Journal. It is the first to run computer simulations on the theory, which was introduced in 2014.

Astrophysicists in Georgia Tech’s College of Sciences created models of red giants similar to those that are supposedly missing from the galactic center — stars that are more than a billion years old and 10s of times larger in size than the Sun. They put them through a computerized version of a wind tunnel to simulate collisions with the gaseous disk that once occupied much of the space within .5 parsecs of the galactic center. They varied orbital velocities and the disk’s density to find the conditions required to cause significant damage to the red giant stars.

“Red giants could have lost a significant portion of their mass only if the disk was very massive and dense,” said Tamara Bogdanovic, the Georgia Tech assistant professor who co-led the study. “So dense, that gravity would have already fragmented the disk on its own, helping to form massive clumps that became the building blocks of a new generation of stars.”

The simulations suggest that each of the red giant stars orbited its way into and through the disk as many as dozens of times, sometimes taking as long as days to weeks to complete a single pass-through. Mass was stripped away with each collision as the star blistered the fragmenting disk’s surface.

According to former Georgia Tech undergraduate student Thomas Forrest Kieffer, the first author on the paper, it’s a process that would have taken place 4 to 8 million years ago, which is the same age as the young stars seen in the center of the Milky Way today.

“The only way for this scenario to take place within that relatively short time frame,” Kieffer said, “was if, back then, the disk that fragmented had a much larger mass than all the young stars that eventually formed from it — at least 100 to 1,000 times more mass.”

The impacts also likely lowered the kinetic energy of the red giant stars by at least 20 to 30 percent, shrinking their orbits and pulling them closer to the Milky Way’s black hole. At the same time, the collisions may have torqued the surface and spun up the red giants, which are otherwise known to rotate relatively slowly in isolation.

“We don’t know very much about the conditions that led to the most recent episode of star formation in the galactic center or whether this region of the galaxy could have contained so much gas,” Bogdanovic said. “If it did, we expect that it would presently house under-luminous red giants with smaller orbits, spinning more rapidly than expected. If such population of red giants is observed, among a small number that are still above the detection threshold, it would provide direct support for the star-disk collision hypothesis and allow us to learn more about the origins of the Milky Way.”

The paper, “Can Star-Disk Collisions Explain the Missing Red Giants Problem in the Galactic Center,” was published on June 1.

This research was funded, in part, by the Alfred P. Sloan Foundation (grant # BR2013-016) and the National Science Foundation (AST-1333360). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Related Links

Additional Information

Groups

Home

Categories
Research
Related Core Research Areas
Systems
Newsroom Topics
Science and Technology
Keywords
Galactic Center, Milky Way, stars, Tamara Bogdanovic
Status
  • Created By: Jason Maderer
  • Workflow Status: Published
  • Created On: Jun 7, 2016 - 4:45am
  • Last Updated: Oct 7, 2016 - 11:21pm