PhD Dissertation Defense by Hakan Demir

*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************

Event Details
  • Date/Time:
    • Tuesday May 17, 2016 - Wednesday May 18, 2016
      10:00 am - 11:59 am
  • Location: L1120 Ford/ES&T
  • Phone:
  • URL:
  • Email:
  • Fee(s):
    N/A
  • Extras:
Contact
No contact information submitted.
Summaries

Summary Sentence: Computational Exploration of Thermodynamic Properties of Porous and Layered Materials

Full Summary: No summary paragraph submitted.

Thesis Advisor:  David Sholl, ChBE

Committee Members:

          Krista Walton, ChBE

          William J. Koros, ChBE

          Christopher W. Jones, ChBE

          Seung Soon Jang, MSE

In this thesis, ab-initio based force fields were developed for Ar and Xe adsorption in six different MOFs to predict adsorption properties and compare this non-empirical approach to the experimental results and generic force field (FF) simulations. Using three DFT functionals (PBE-D2, vdW-DF, and vdW-DF2) in periodic models of M-MOF-74 (M= Co, Ni, Zn, Mg), ZIF-8 and Cu-BTC, first principles based FFs are derived. Selective separation of contaminants from ambient air is another crucial field since some of those contaminants can be detrimental to health. Moreover, UiO-66 is computationally functionalized with more than 30 functional groups using cluster and periodic systems and binding energies of NH3, H2S, CO2 and H2O are calculated to rank the functionalized UiO-66 materials for selective separation of contaminants in humid air conditions. Finally, the phase stability and transitions of 2-D layered ferroelectric materials, CuInP2Q6 (Q=S, Se), are investigated. The phase transition of CuInP2Se6 is studied using DFT calculations and phonon theory to identify instabilities at zone center and boundaries of the structure while possible spinodal decomposition regions of CuxInyP2S6 are determined with respect to Cu concentration by combining DFT calculations with thermodynamic relations.

Additional Information

In Campus Calendar
No
Groups

Graduate Studies

Invited Audience
Public
Categories
Other/Miscellaneous
Keywords
PhD Dissertation Defense
Status
  • Created By: Jacquelyn Strickland
  • Workflow Status: Published
  • Created On: May 4, 2016 - 12:06pm
  • Last Updated: Oct 7, 2016 - 10:17pm