*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************
Siva Rajamanickam
PhD Candidate, CISE Department at the University of Florida
For more information please contact Dr. David Bader at bader@cc.gatech.edu
"Blocked Plane Rotations for Band Reduction and Sparse SVD"
Abstract:
With the success of Basic Linear Algebra Subroutines (BLAS) in using the memory efficiently, the algorithms with vector operations (BLAS2) have given way to algorithms with matrix operations (BLAS3). In some cases, BLAS3 based algorithms are successful even with the cost of doing additional floating point operations and using additional memory. In this talk, I will talk about two problems where algorithms with vector operations when combined with blocking can perform better than BLAS3 based algorithms.
Band reduction methods are mainly used in computing the eigen value decomposition and singular value decomposition of band matrices. In the first part of this talk, I will outline a blocking scheme for plane rotations. The blocked plane rotations when coupled with a pipelining scheme leads to fewer floating point operations and memory usage than the BLAS3 based band reduction methods. The blocked method is also able to extract the same performance benefits from the cache as the BLAS3 based methods leading to a faster band reduction method. I will also show how we can exploit the zeros while finding the eigen and singular vectors.
In the second part of the talk, I will introduce a method for computing the bidiagonalization of a sparse upper triangular matrix R. In this method, we exploit the sparsity of R and use plane rotations to reduce it to the bidiagonal form. We choose the rotations to minimize the fill generated in R itself. I will show how to extend this method to use dynamic blocking and the pipelining scheme to arrive at an efficient R-bidiagonalization method for computing the sparse SVD.
Bio:
Siva Rajamanickam is a PhD candidate in the CISE department at the University of Florida. His research interests are in sparse matrix algorithms. Specifically, he works on direct methods for sparse eigen value and singular value decompositions. He has also worked on band reduction methods and ordering methods for sparse Cholesky and sparse LU factorizations. He is one of the authors of CCOLAMD which is part of the CHOLMOD package. He was also part of the development teams in Sun Microsystems and Tandem computers.
~~~~~~~~~~~~~~~~~~~~~~~
You are cordially invited to attend a reception that will follow the seminar to chat informally with faculty and students. Refreshments will be provided.
To receive future announcements, please sign up to the cse-seminar email list:
https://mailman.cc.gatech.edu/mailman/listinfo/cse-seminar