*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************
A. Harry Asada, Ph.D.
Professor of Engineering
Department of Mechanical Engineering
Director, d'Arbeloff Laboratory for Information Systems & Technology
Head, Control, Instrumentation & Robotics
Massachusetts Institute of Technology
April 5, 2016
11 a.m.
Petit Institute 1128
Humans can extend their physical and cognitive abilities to an unprecedented level in the near future. Human 2.0 can be an order of magnitude stronger, smarter, and more productive, as well as can live longer and keep their abilities for a longer period of life. This talk will address the possibility of creating a new generation of humans based on bio-hybrid robotics and bioengineering. First, a new type of wearable robots, called Supernumerary Robotic Limbs, will be introduced. A pair of robotic arms attached to the body of a human can help the human hold objects, support the body, share a workload, and streamline the execution of a task. A hemiplegic stroke survivor can perform bimanual tasks with one hand being assisted by a pair of extra robotic fingers. The neuro-motor control principle of “synergy” is applied to these wearable robots to coordinate the robotic limbs with the human.
In the second half of the talk, the possibility of using biological materials, specifically skeletal muscles, for replacing robotic actuators or ailing human muscles as well as for augmenting human physical abilities will be addressed. Three-dimensional tissue of fascicle-like skeletal muscle is formed by using a sacrificial molding technique and its mechanical properties are characterized. An optogenetic control technique is developed for controlling a multitude of skeletal muscle strips with high spatiotemporal resolution. A muscle training technique with coordinated mechanical and electrical/optical stimuli will be presented to significantly improve contractile performance.
Unlike robotic actuators, biological muscle actuators work in an ecosystem interacting with the environment. In the final segment of this talk, the on-going research on interactions between a multitude of cells and Extra-Cellular Matrix (ECM) will be addressed, with special emphasis on filopodia-ECM fiber interactions and their emergent behaviors. A computational model for predicting 3D cell-into-ECM invasion with detailed filopodia-ECM dynamics will be developed and integrated with experiments. This method will be applied to myogenesis and muscle maturation to better understand ECM fiber remodeling and its effect on contractile performance.
Faculty host - Melissa Kemp, Ph.D.
View upcoming Bioengineering Seminars