PhD Dissertation Defense by Parthasarathi Chakraborti

*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************

Event Details
  • Date/Time:
    • Thursday March 3, 2016
      11:30 am - 1:30 pm
  • Location: MARC #201
  • Phone:
  • URL:
  • Email:
  • Fee(s):
    N/A
  • Extras:
Contact
No contact information submitted.
Summaries

Summary Sentence: Nano-scale Electrode and Dielectric Materials, Processes and Interfaces to form Thin-film Tantalum Capacitors for High-frequency Applications

Full Summary: No summary paragraph submitted.

Committee Members:

Prof. Rao Tummala (MSE, advisor)

Prof. Dong Qin (MSE)

Prof. Garmestani (MSE)

Dr. Raj Pulugurtha (ECE)

Prof. Rosario Gerhardt (MSE)

Dr. Venky Sundaram (ECE)

 

Title: Nano-scale Electrode and Dielectric Materials, Processes and Interfaces to form Thin-film Tantalum Capacitors for High-frequency Applications

 

Abstract:

 

Today’s thin-film passive components such as capacitors and inductors are limited to low volumetric density and large form-factors that pose as major roadblock to miniaturization of the power modules. These components are also placed far away from the IC’s leading to large interconnect parasitics and lower operating frequencies. Novel thin-film technologies with high densities and small form-factors are, therefore, required to enable miniaturization and performance at high frequencies. Glass- and silicon- based interposer technologies that utilize vertical through-via interconnections have shown way to improve power distribution network (PDN) performance with thin power-ground planes. However, integration of ultra-high density capacitors in such substrates has not yet been demonstrated. This thesis addresses these challenges with tantalum-based, silicon-integrated, ultrathin, high-density capacitors at higher operating frequencies with lower leakage properties (<0.01µA/µF). The anodization kinetics of tantalum pentoxide and the underlying leakage current mechanisms are investigated to provide optimal process guidelines. The thin-film Ta capacitors demonstrated capacitance density of 0.1 µF/mm2 at 1-10 MHz in form-factors of 50 µm, which corresponds to 6X higher volumetric density relative to commercial tantalum capacitors.   An innovative approach to address incompatibility of tantalum electrodes with substrates is pursued by prefabricating the electrodes on a free-standing foil, which are then transferred onto the active wafer to form the capacitors on Si. The integration approach is designed to embed these thin tantalum capacitors on alternative substrates such as organic, glass or silicon, with copper via interconnections for lower parasitics. The thesis also explores titanium-based high-density capacitors with high-permittivity titania dielectric as a potential alternate high-density capacitor technology.

Additional Information

In Campus Calendar
No
Groups

Graduate Studies

Invited Audience
Public
Categories
Other/Miscellaneous
Keywords
PhD Dissertation Defense
Status
  • Created By: Jacquelyn Strickland
  • Workflow Status: Published
  • Created On: Mar 1, 2016 - 1:14pm
  • Last Updated: Oct 7, 2016 - 10:16pm