*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************
A recent addition to low-dimensional materials are monolayer transition metal dichalcogenides (TMDs), such as WSe2, with an atomically thin, honeycomb lattice and optical band gaps. In addition to spin, charge carriers in TMDs exhibit a “valley” degree of freedom, which can be optically addressed using circularly polarized light, opening up exciting possibilities for “valleytronics". Another curious aspect of TMDs lies in the non-trivial geometry of their band structure which gives rise to equal but opposite Berry curvature, an effective magnetic field in the momentum space. Owing to unusually strong Coulomb interactions in truly 2D limit, optical spectra of monolayer TMDs is dominated by tightly bound excitons that are expected to strongly couple to light and form stable polaritons - half light, half matter excitations.
In this talk, I will begin by presenting our recent results on valley Zeeman effect, where in analogy to spins, valleys shift in energy with magnetic field. Next, I will discuss our theoretical results on how the non-trivial geometry of Bloch bands modifies the excitonic fine structure of TMDs resulting in an orbital Zeeman effect in reciprocal space and a Lamb-like shift of levels. Finally, I will present our recent results on the observation of microcavity polaritons confirming the strong light-matter interactions in these materials. The presence of valley degree of freedom, non-trivial geometry of bands, and the possibility of introducing non-linearities in form of quantum emitters makes polaritons in TMDs particularly appealing for studying correlated many-body physics and topological states of matter.
[1]. A. Srivastava et al., Nature Phys. 11, 141-147 (2015).
[2]. A. Srivastava et al., Nature Nanotech. 10, 491-496 (2015).
[3]. A. Srivastava and A. Imamoglu, Phys. Rev. Lett. 115, 166803 (2015).