ARC Colloquium: Marco-Dick Yun Kuen Cheung - University of Vienna

*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************

Event Details
Contact

Dani Denton
denton at cc dot gatech dot edu

 

Summaries

Summary Sentence: Klaus 1116 West at 1 pm

Full Summary: No summary paragraph submitted.

Algorithms & Randomness Center (ARC)

Marco-Dick Yun Kuen Cheung  - University of Vienna

Monday, February 29, 20116

Klaus 1116 West - 1:00 pm

(Refreshments will be served in Klaus 2222 at 2 pm)

Title:
Graph Minors for Preserving Terminal Distances Approximately

Abstract:
Given a graph where vertices are partitioned into k terminals and non-terminals, the goal is to compress the graph (i.e., reduce the number of non-terminals) using minor operations while preserving terminal distances approximately. The distortion of a compressed graph is the maximum multiplicative blow-up of distances between all pairs of terminals. We study the trade-off between the number of non-terminals and the distortion.  This problem generalizes the Steiner Point Removal (SPR) problem, in which all non-terminals must be removed.

We introduce a novel black-box reduction to convert any lower bound on distortion for the SPR problem into a super-linear lower bound on the number of non-terminals, with the same distortion, for our problem. This allows us to show that there exist graphs such that every minor with distortion less than 2 / 2.5/ 3  must have \Omega(k^2) / \Omega(k^{5/4}) / \Omega(k^{6/5}) non-terminals, plus more trade-offs in between. The black-box reduction has an interesting consequence: if the tight lower bound on distortion for the SPR problem is super-constant, then allowing any linear (in k) non-terminals will not help improving the lower bound to a constant.

We also build on the existing results on spanners, distance oracles and connected 0-extensions to show a number of upper bounds for general graphs, planar graphs, graphs that exclude a fixed minor and bounded treewidth graphs. Among others, we show that any graph admits a minor with O(log k) distortion and O(k^2) non-terminals, and any planar graph admits a minor with $1+epsilon$ distortion and O(k^2 log^2 k / epsilon^2) non-terminals.

 

Additional Information

In Campus Calendar
No
Groups

ARC, College of Computing, School of Computer Science

Invited Audience
Undergraduate students, Faculty/Staff, Public, Graduate students
Categories
Seminar/Lecture/Colloquium
Keywords
Algorithm and Randomness Center, ARC, Computational Complexity, Computational Learning Theory, Georgia Tech
Status
  • Created By: Dani Denton
  • Workflow Status: Published
  • Created On: Feb 15, 2016 - 5:03am
  • Last Updated: Apr 13, 2017 - 5:16pm