*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************
TITLE: Local Gaussian process approximation for large computer experiments
ABSTRACT:
We provide a new approach to approximate emulation of large computer experiments. By focusing expressly on desirable properties of the predictive equations, we derive a family of local sequential design schemes that dynamically define the support of a Gaussian process predictor based on a local subset of the data. We further derive expressions for fast sequential updating of all needed quantities as the local designs are built-up iteratively. Then we show how independent application of our local design strategy across the elements of a vast predictive grid facilitates a trivially parallel implementation. The end result is a global predictor able to take advantage of modern multicore architectures, GPUs, and cluster computing, while at the same time allowing for a non stationary modeling feature as a bonus. We demonstrate our method on examples utilizing designs sized in the tens of thousands to over a million data points. Comparisons are made to the method of compactly supported covariances, and we present applications to computer model calibration of a radiative shock and the calculation of satellite drag.