*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************
Atlanta, GA | Posted: March 23, 2009
Researchers at the Georgia Institute of Technology have identified the genetic machinery responsible for synthesizing thiostrepton, a powerful antibiotic produced by certain bacteria. Though effective against the dangerous MRSA (methicillin-resistant Staphylococcus aureus) and vancomycin-resistant enterococci, thiostrepton currently has only limited applications in humans because it is not water soluble.
Identification of the gene cluster responsible for producing thiostrepton sets the stage for genetic manipulations that could make the drug more useful by improving its water solubility, potentially providing a new tool in the high-stakes battle against bacteria. Beyond the possible medical applications, the research produced a scientific surprise: thiostrepton is derived from a genetically encoded peptide that undergoes no fewer than 19 different modifications, one of the most complex such processes known