Study Reveals How Snakes Slither on Flat Terrain

*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************

Snakes Use Friction and Weight Redistribution for Locomotion

Contact
Abby Vogel
Research News and Publications
Contact Abby Vogel
404-385-3364
Sidebar Content
No sidebar content submitted.
Summaries

Summary Sentence:

Snakes Use Friction and Weight Redistribution to Glide on Flat L

Full Summary:

Snakes use both friction generated by their scales and redistribution of their weight to slither along flat surfaces, researchers at New York University and the Georgia Institute of Technology have found.

Media
  • Snake research Snake research
    (image/jpeg)
  • Snake forces Snake forces
    (image/jpeg)

Snakes use both friction generated by their scales and redistribution of their weight to slither along flat surfaces, researchers at New York University (NYU) and the Georgia Institute of Technology have found. Their findings, which appear in the latest issue of the journal Proceedings of the National Academy of Sciences, run counter to previous studies that have shown snakes move by pushing laterally against rocks and branches.

"We found that snakes' belly scales are oriented so that snakes resist sliding toward their tails and flanks," said the paper's lead author, David Hu, a former postdoctoral researcher at NYU's Courant Institute of Mathematical Sciences and now an assistant professor in Georgia Tech's George W. Woodruff School of Mechanical Engineering. "These scales give the snakes a preferred direction of motion, which makes snake movement a lot like that of wheels, cross-country skis, or ice skates. In all these examples, sliding forwards takes less work than does sliding sideways."

The study's other co-authors were Jasmine Nirody and Terri Scott, both undergraduate researchers at NYU, and Michael Shelley, a professor of mathematics and neural science and the Lilian and George Lyttle Professor of Applied Mathematics at Courant.

The study centered on the frictional anisotropy--or resistance to sliding in certain directions--of a snake's belly scales. While previous investigators had suggested that the frictional anisotropy of these scales might play a role in locomotion over flat surfaces, the details of this process had not been understood.

To explore this matter, the researchers first developed a theoretical model of a snake's movement. The model determined the speed of a snake's center of mass as a function of the speed and size of its body waves, taking into account the laws of friction and the scales' frictional anisotropy. The model suggested that a snake's motion arises by the interaction of surface friction and its internal body forces.

To confirm movement as predicted by the model, the researchers then measured the sliding resistance of snake scales and monitored the movement of snakes through a series of experiments on flat and inclined surfaces. They employed video and time-lapse photography to gauge their movements.

The results showed a close relationship between what the model predicted and the snakes' actual movements. The theoretical predictions of the model were generally consistent with the snakes' actual body speeds on both flat and inclined surfaces.

Research News & Publications Office
Georgia Institute of Technology
75 Fifth Street, N.W., Suite 100
Atlanta, Georgia 30308 USA

Media Relations Contacts: Georgia Tech -- Abby Vogel (404-385-3364); E-mail: (avogel@gatech.edu) or John Toon (404-894-6986); E-mail: (jtoon@gatech.edu); NYU -- James Devitt (212-998-6808); E-mail: (james.devitt@nyu.edu)

Writer: James Devitt

Related Links

Additional Information

Groups

Research Horizons

Categories
Engineering, Life Sciences and Biology, Research
Related Core Research Areas
No core research areas were selected.
Newsroom Topics
No newsroom topics were selected.
Keywords
david, friction, glide, hu, locomotion, mechanics, movement, slither, Snake
Status
  • Created By: Abby Vogel Robinson
  • Workflow Status: Published
  • Created On: Jun 7, 2009 - 8:00pm
  • Last Updated: Oct 7, 2016 - 11:03pm