*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************
Dr. Yijian Huang
Associate Professor
Department of Biostatistics
Rollins School of Public Health
Emory University
Accelerated Recurrence Time Models
For the analysis with recurrent events, we propose a generalization of the accelerated failure time model to allow for evolving covariate effects. These so-called accelerated recurrence time models postulate that time to expected recurrence frequency, upon transformation, is a linear function of covariates with frequency-dependent coefficients. This modeling strategy shares the same spirit as quantile regression. An estimation and inference procedure is developed by generalizing the celebrated Powell's (1984, 1986) estimator for censored quantile regression. Consistency and asymptotic normality of the proposed estimator are established. An algorithm is devised to attain good computational efficiency. Simulations demonstrate that this proposal performs well under practical settings. This methodology is illustrated in an application to the well-known bladder cancer study.
This talk is based on joint work with Limin Peng.