*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************
Title: Robust portfolio selection with benchmarked objectives
In this paper, we propose and analyze a new approach to finding robust portfolios for asset allocation problems. It differs from the usual worst case approach in that a (dynamic) portfolio is evaluated not only by its performance when there is an adversarial opponent (``nature"), but also by its performance relative to a fully informed benchmark investor who behaves optimally given complete knowledge of the model (i.e. nature's decision). This relative performance approach has several important properties: (i) optimal decisions are less pessimistic than portfolios obtained from the usual worst case approach, (ii) the dynamic problem reduces to a convex static optimization problem under reasonable choices of the benchmark portfolio for important classes of models including ambiguous jump-diffusions, and (iii) this static problem is dual to a Bayesian version of a single period asset allocation problem where the prior on the unknown parameters (for the dual problem) correspond to the Lagrange multipliers in this duality relationship.