*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************
Advisor
Robert E. Guldberg, Ph.D. (Georgia Institute of Technology)
Committee
Edward A. Botchwey, PhD. (Georgia Institute of Technology)
Andrés J. García, Ph.D. (Georgia Institute of Technology)
Johnna S. Temenoff, Ph.D. (Georgia Institute of Technology)
Lisa Tran, D.D.S., M.D. (Emory University)
Biomaterial strategies for improved bone healing with bone morphogenetic protein-2 delivery
Musculoskeletal injuries account for two-thirds of all injuries that occur in the United States annually, and among these injuries, large bone defects are particularly challenging to repair. Although bone morphogenetic protein-2 (BMP-2) delivered on an absorbable collagen sponge (ACS) has shown clinical success in long bone healing, complications associated with the empirical use of supraphysiological doses of BMP-2, including heterotopic mineralization and inflammation, necessitate the development of a biomaterial carrier that localizes growth factors to the site of injury. In the development of bone tissue engineering strategies, another critical design parameter is the timing of delivery vehicle degradation, since bone regeneration may be impeded by the presence of residual biomaterials at the injury site. Further, bioactive, naturally derived extracellular matrix (ECM) products with pro-healing and immunomodulatory properties are attractive therapeutics with rapid translatability that may function to attenuate heterotopic mineralization often observed with high dose BMP-2 treatment.
The goal of this work was to investigate hybrid biomaterial systems with controlled strategies for BMP-2 delivery to promote structural and functional restoration of segmental bone defects. Using a critically sized rat segmental bone defect model, we (i) evaluated the effects of alginate hydrogel oxidation on BMP-2 release and bone regeneration, (ii) elucidated the spatiotemporal effects of high dose BMP-2 on bone healing and gene expression, and (iii) investigated the ability of amniotic membrane to attenuate heterotopic mineralization in critically sized bone defects. Modification of the delivery vehicle to modulate growth factor availability may help minimize adverse side effects associated with high dose BMP-2 delivery, while harnessing the healing efficacy of BMP-2 for bone tissue engineering applications.