PhD Defense by Chingiz Kabytayev

*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************

Event Details
  • Date/Time:
    • Wednesday April 29, 2015 - Thursday April 30, 2015
      10:00 am - 11:59 am
  • Location: U.A. Whitaker Biomedical Engineering 1214
  • Phone:
  • URL:
  • Email:
  • Fee(s):
    N/A
  • Extras:
Contact
No contact information submitted.
Summaries

Summary Sentence: Quantum control for time-dependent noise

Full Summary: No summary paragraph submitted.

PhD Thesis Defense: Quantum control for time-dependent noise

Student: Chingiz Kabytayev

Advisor: Professor Kenneth R. Brown

Date: April 29, 2015

Time: 10:00 a.m.

Location: U.A. Whitaker Biomedical Engineering 1214

Abstract:

    The main obstacles to implementing ideal quantum operations are unwanted interactions of quantum systems with the environment and noise in control fields. This problem can be tackled by methods of quantum control. Among these methods are composite pulse (CP) sequences which have long been employed in nuclear magnetic resonance (NMR) to mitigate the effects of systematic errors in the control. CP sequences have been initially developed to correct for static but otherwise unknown errors in the amplitude or frequency of the driving field.
     One of the challenges to the systematic incorporation of these control protocols into practical quantum information systems remains the limited understanding of CP performance in the presence of time-dependent noise. Treating the influence of time-dependent noise processes on quantum control operations has been facilitated by recent advances in dynamical error suppression based on open-loop Hamiltonian engineering. These approaches provide a general framework for understanding and mitigating non-Markovian time-dependent noise in a finite-dimensional open quantum system. Particularly, arbitrary single-qubit control characteristics may be captured quantitatively in filter-transfer functions (FF) using methods of spectral overlap in the frequency domain.
     In this thesis work, we present a systematic study of control pulse sequences in the presence of time-dependent noise. We use a combination of analytic formulations based on FFs and numerical simulations to demonstrate that CPs are able to effectively suppress control errors caused by time-dependent processes possessing realistic noise power spectra. We provide a geometric interpretation of CP performance under time-dependent amplitude noise, further linking the FF formalism with known techniques in CP construction. We also develop new optimized pulse sequences that act as notch filters for time-dependent noise. These high-fidelity control protocols effectively suppress errors from the noise sources with sharp features in spectral densities and can be used practically on various quantum architectures. We also present our work on simulation of randomized benchmarking protocols and CPs that have been used experimentally by our collaborators to measure the gate errors.    

Additional Information

In Campus Calendar
No
Groups

Graduate Studies

Invited Audience
Public
Categories
Other/Miscellaneous
Keywords
defense, graduate students, PhD
Status
  • Created By: Tatianna Richardson
  • Workflow Status: Published
  • Created On: Apr 15, 2015 - 11:17am
  • Last Updated: Oct 7, 2016 - 10:11pm