ISyE Seminar - Huseyin Topaloglu

*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************

Event Details
  • Date/Time:
    • Tuesday March 31, 2015 - Wednesday April 1, 2015
      11:00 am - 11:59 am
  • Location: Executive Conference Room 228 Main
  • Phone:
  • URL:
  • Email:
  • Fee(s):
    N/A
  • Extras:
Contact

Alejandro Toriello

atoriello@isye.gatech.edu

Summaries

Summary Sentence: ISyE Seminar - Huseyin Topaloglu

Full Summary: No summary paragraph submitted.

TITLE: Revenue Management Under Markov Chain Choice Model

ABSTRACT:

A recent choice model is based on modeling the customer choice process through a Markov chain. In this choice model, a customer arrives into the system with the intention of purchasing a particular product. If this product is available for purchase, then the customer purchases it and leaves the system. Otherwise, the customer transitions to another product according to a Markov chain and considers purchasing the other product. In this way, the customer transitions between the products until she reaches a product that is available for purchase or she decides to leave the system without purchasing anything. In this talk, we consider revenue management problems when customers choose according to the Markov chain choice model. For single-leg revenue management, we study the dynamic programming formulation of the problem. We show that the efficient offer sets are nested and the optimal policy can be characterized by nested protection levels. For network revenue management, we study a deterministic linear program that offers each subset of products with a certain probability. In the deterministic linear program, there is one decision variable for each subset of products. Thus, the number of decision variables grows exponentially fast with the number of products, and it is common to solve the deterministic linear program through column generation. We show that if the customers choose according to the Markov chain choice model, then the deterministic linear program can immediately be reduced to an equivalent one whose numbers of decision variables and constraints grow only linearly with the number of products. (This work is joint with Jacob Feldman.)

 

Additional Information

In Campus Calendar
No
Groups

School of Industrial and Systems Engineering (ISYE)

Invited Audience
Undergraduate students, Faculty/Staff, Graduate students
Categories
Seminar/Lecture/Colloquium
Keywords
No keywords were submitted.
Status
  • Created By: Anita Race
  • Workflow Status: Published
  • Created On: Mar 24, 2015 - 11:24am
  • Last Updated: Apr 13, 2017 - 5:19pm