Fish use chemical camouflage from diet to hide from predators

*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************

Contact

Brett Israel

404-385-1933

@btiatl

Sidebar Content
No sidebar content submitted.
Summaries

Summary Sentence:

A species of small fish uses a homemade coral-scented cologne to hide from predators, a new study has shown, providing the first evidence of chemical camouflage from diet in fish.

Full Summary:

No summary paragraph submitted.

Media
  • Filefish Filefish
    (image/jpeg)
  • Rohan Booker Rohan Booker
    (image/jpeg)

A species of small fish uses a homemade coral-scented cologne to hide from predators, a new study has shown, providing the first evidence of chemical camouflage from diet in fish.

Filefish evade predators by feeding on their home corals and emitting an odor that makes them invisible to the noses of predators, the study found. Chemical camouflage from diet has been previously shown in insects, such as caterpillars, which mask themselves by building their exoskeletons with chemicals from their food. The new study shows that animals don’t need an exoskeleton to use chemical camouflage, meaning more animals than previously thought could be using this survival tactic.

“This is the very first evidence of this kind of chemical crypsis from diet in a vertebrate,” said Rohan Brooker, a post-doctoral fellow in the School of Biology at the Georgia Institute of Technology in Atlanta. “This research shows that you don’t need an exoskeleton that for this kind of mechanism to work.”

The study was published December 10 in the journal Proceedings of the Royal Society B. The study was sponsored by the ARC Centre of Excellence for Coral Reef Studies and the Ecological Society of Australia. The work was done as a part of Booker’s doctoral research at James Cook University in Australia. 

Anyone who has watched a nature documentary has seen insects that camouflage themselves as sticks, protecting the insects against predators that use vision to hunt for prey. But many animals see the world through smell rather than sight, and cunning critters from among them have adapted clever ways of smelling like their surroundings. A certain species of caterpillar, for example, smells like the plant that it lives on and eats. The caterpillar incorporates chemicals from the plant into its exoskeleton. Ants hunting for the caterpillar will walk right over it, none the wiser.

For the new study, researchers traveled to Australia’s Lizard Island Research Station in the Great Barrier Reef, where they collected filefish. To show that filefish smelled like their home coral, the researchers recruited crabs to sniff them out. The filefish were fed two different species of coral; each species of coral is home to a unique species of crab. The crabs were given a choice between a filefish that had been fed the crab’s home coral and a filefish that had been fed a coral that is foreign to the crab. The crabs always sought the filefish that had been feeding on the crabs home coral. The filefish smelled so strongly of coral that sometimes the crabs were attracted to the fish instead of coral, when given a choice between the two.

“We can tell that there is something going through the filefish diet that’s making the fish smell enough like the coral to confuse the crabs,” Booker said.

To see if the chemical camouflage gives the filefish an evolutionary advantage to evade predators, the researchers tested cod to see how they responded to filefish that had been fed various diets. Cod, filefish and corals were put in a tank, with the filefish hidden from the cod. When the filefish diet didn’t match the corals in the tank, the cod were restless, suggesting that they smelled food. When the filefish diet matched the corals in the tank, the cod stayed tucked away in their cave inside the tank.

The next step in the project is to learn how filefish can smell like coral without the benefit of an exoskeleton. Some evidence shows that amino acids in the mucus of fish – where much of their smell originates – will match their diet, but much work remains to tease apart this pathway.

“We have established that there is some kind of pathway from filefish diet to filefish odor,” Booker said. “This is just the first study. There’s a lot of work still to be done to understand how it works.”

Booker is now working in the lab of Danielle Dixson, an associate professor of biology at Georgia Tech.

This research is supported by the ARC Centre of Excellence for Coral Reef Studies and the Ecological Society of Australia. Any conclusions or opinions are those of the authors and do not necessarily represent the official views of the sponsoring agencies.

CITATION: Rohan Brooker, et al., “You are what you eat: diet-induced chemical crypsis in a coral-feeding fish.” (Proceedings of the Royal Society B, December 2014). http://rspb.royalsocietypublishing.org/content/282/1799/20141887

Research News
Georgia Institute of Technology
177 North Avenue
Atlanta, Georgia  30332-0181  USA
@GTResearchNews

Media Relations Contacts: Brett Israel (@btiatl) (404-385-1933) (brett.israel@comm.gatech.edu) or John Toon (404-894-6986) (jtoon@gatech.edu)

Writer: Brett Israel 

Additional Information

Groups

Research Horizons

Categories
Environment, Life Sciences and Biology
Related Core Research Areas
Bioengineering and Bioscience
Newsroom Topics
Earth and Environment
Keywords
No keywords were submitted.
Status
  • Created By: Brett Israel
  • Workflow Status: Published
  • Created On: Dec 11, 2014 - 5:39am
  • Last Updated: Oct 7, 2016 - 11:17pm