ISyE Seminar

*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************

Event Details
  • Date/Time:
    • Thursday December 4, 2014 - Friday December 5, 2014
      2:00 pm - 2:59 pm
  • Location: Executive Conference Room 228 Main
  • Phone:
  • URL:
  • Email:
  • Fee(s):
    N/A
  • Extras:
Contact

Ben Haaland

ben.haaland@isye.gatech.edu

Summaries

Summary Sentence: ISyE Seminar

Full Summary: No summary paragraph submitted.

TITLE: Network Meta-Analysis for Comparative Effectiveness

SPEAKER:  Chris Schmid

ABSTRACT:

Comparative effectiveness usually involves evaluation of multiple interventions and may involve multiple outcomes measured at multiple times as well. Meta-analysis, whether of continuous or discrete outcomes, has in the past focused on summarizing the evidence comparing two treatments or classes of treatments. Recently, methods have been developed to integrate comparisons of multiple treatments into coherent models that allow simultaneous comparison of all treatments, combining the direct evidence from head-to-head studies with indirect evidence from trials that involve common comparators.

The network models provide estimates of the relative effectiveness or harms of all included treatments, and a ranking with associated probability estimates. These methods depend on a crucial assumption that the direct and indirect evidence are compatible (consistency) and that treatments are mutually exchangeable across studies (transitivity). This talk will introduce meta-analysis in the context of evidence-based science and will then outline the basic principles of network meta-analysis and assessment of the validity of its assumptions including the key role that potential effect modifiers play. Examples of its application to different types of outcomes, both efficacy and safety with discussion of incomplete data problems will be discussed.

Additional Information

In Campus Calendar
No
Groups

School of Industrial and Systems Engineering (ISYE)

Invited Audience
Undergraduate students, Faculty/Staff, Graduate students
Categories
Seminar/Lecture/Colloquium
Keywords
No keywords were submitted.
Status
  • Created By: Anita Race
  • Workflow Status: Published
  • Created On: Dec 2, 2014 - 10:27am
  • Last Updated: Apr 13, 2017 - 5:20pm