*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************
(Refreshments served in Klaus 2222 at 2 pm)
Title:
Approximately Stable, School Optimal, and Student-Truthful Many-to-One Matchings (via Differential Privacy)
Abstract:
We present a mechanism for computing asymptotically stable school optimal matchings, while guaranteeing that it is an asymptotic dominant strategy for every student to report their true preferences to the mechanism. Our main tool in this endeavor is differential privacy: we give an algorithm that coordinates a stable matching using differentially private signals, which lead to our truthfulness guarantee. This is the first setting in which it is known how to achieve nontrivial truthfulness guarantees for students when computing school-optimal matchings, assuming worst-case preferences (for schools and students) in large markets.
Joint work with Sampath Kannan, Aaron Roth and Zhiwei Steven Wu: SODA 2015.