Seminar -- Michael Janik

*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************

Event Details
Contact

Amy Schneider
School of Chemical & Biomolecular Engineering
(404) 385-2299
info@chbe.gatech.edu

Summaries

Summary Sentence: ChBE hosts seminars throughout the year with invited lecturers who are prominent in their fields.

Full Summary: No summary paragraph submitted.

In addition to its annual lectures, ChBE hosts seminars throughout the year with invited lecturers who are prominent in their fields. Unless otherwise noted, all seminars are held on Wednesdays in the Molecular Science and Engineering Building ("M" Building) in G011 (Cherry Logan Emerson Lecture Theater) at 4 p.m. Refreshments are served at 3:30 p.m. in the Emerson-Lewis Reception Salon.

_____________

"Development of Electrocatalytic Materials Guided by Computational Chemistry: Fuel Cells and CO2 Electroreduction"

Michael Janik, Associate Professor, Department of Chemical Engineering, Penn State University

Abstract:
Our group applies computational chemistry techniques to a range of catalyst and materials design challenges in energy technology. This presentation will concentrate on our work in electrocatalysis.Electrocatalysts are an essential component of fuel cells, electrolyzers, and some battery technologies. The development of composition-structure-functional relationships guides rational design of electrocatalytic materials. Quantum mechanics based computational techniques, such as density functional theory methods, are a useful tool in guiding catalyst design. Density functional theory (DFT) methods are widely used to evaluate surface catalytic reaction mechanisms and to predict the relative performance of various catalyst formulations or structures. Translation of DFT approaches to the electrocatalytic environment requires additional methodological choices due to additional complexities offered by the electrified catalyst-electrolyte interface. This talk will provide an overview of the challenges to atomistic modeling of electrochemical interfaces and describe the various DFT approaches used to model electrocatalytic systems. The use of DFT to determine electrocatalytic reaction mechanisms and guide the design of catalytic materials will be discussed using examples from our group’s research; hydrogen fuel cells, borohydride fuel cells, and carbon dioxide reduction to fuels.

Additional Information

In Campus Calendar
No
Groups

School of Chemical and Biomolecular Engineering

Invited Audience
Public
Categories
Seminar/Lecture/Colloquium
Keywords
No keywords were submitted.
Status
  • Created By: Amy Schneider
  • Workflow Status: Published
  • Created On: Nov 20, 2014 - 11:41am
  • Last Updated: Oct 7, 2016 - 10:10pm