CSIP Seminar

*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************

Event Details
  • Date/Time:
    • Friday November 7, 2014 - Saturday November 8, 2014
      2:00 pm - 1:59 pm
  • Location: Centergy One 5186 (CSIP Library)
  • Phone:
  • URL:
  • Email:
  • Fee(s):
    N/A
  • Extras:
Contact

Andrew Massimino

massimino@gatech.edu

 

Summaries

Summary Sentence: Local Collaborative Ranking for Recommendation Systems

Full Summary: No summary paragraph submitted.

Speaker: Joonseok Lee, Georgia Tech

Title: Local Collaborative Ranking for Recommendation Systems

Abstract:
Personalized recommendation systems are used in a wide variety of applications such as electronic commerce, social networks, web search, and more. Collaborative filtering approaches to recommendation systems typically assume that the rating matrix (e.g., movie ratings by viewers) is low-rank. In this talk, we examine an alternative approach in which the rating matrix is locally low-rank. Concretely, we assume that the rating matrix is low-rank within certain neighborhoods of the metric space defined by (user, item) pairs. We combine a recent approach for local low-rank approximation based on the Frobenius norm with a general empirical risk minimization for ranking losses. Our experiments indicate that the combination of a mixture of local low-rank matrices each of which was trained to minimize a ranking loss outperforms many of the currently used state-of-the-art recommendation systems. Moreover, our method is easy to parallelize, making it a viable approach for large scale real-world rank-based recommendation systems.

Speaker Bio:
Joonseok Lee is a Ph.D candidate in the College of Computing at the Georgia Institute of Technology. He is mainly working on recommendation systems and collaborative filtering in the Statistical Machine Learning and Visualization Lab. He has done three internships during his Ph.D, including Amazon (2014 Summer), Microsoft Research (2014 Spring), and Google (2013 Summer). Before coming to Georgia Tech, he worked in NHN corp. in Korea (2007-2010). He received his B.S degree in computer science and engineering from Seoul National University, Korea. His paper "Local Collaborative Ranking" received the best student paper award from the 23rd International World Wide Web Conference (2014).

Additional Information

In Campus Calendar
No
Groups

School of Electrical and Computer Engineering

Invited Audience
Undergraduate students, Faculty/Staff, Graduate students
Categories
Seminar/Lecture/Colloquium
Keywords
No keywords were submitted.
Status
  • Created By: Ashlee Gardner
  • Workflow Status: Published
  • Created On: Oct 17, 2014 - 8:36am
  • Last Updated: Apr 13, 2017 - 5:21pm