Emergent Behaviors of Integrated Cellular Systems Distinguished Lecture

*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************

Event Details
  • Date/Time:
    • Thursday September 18, 2014 - Friday September 19, 2014
      4:00 pm - 4:59 pm
  • Location: Video conference, Petit Institute 1128
  • Phone: (404) 894-6228
  • URL: http://www.petitinstitute.gatech.edu
  • Email:
  • Fee(s):
    N/A
  • Extras:
Contact

Lakeita Servance

Summaries

Summary Sentence: "iPS Cell Technology, Gene Editing & Disease Research" - Rudolf Jaenisch, MD - Massachusetts Institute of Technology

Full Summary: Emergent Behaviors of Integrated Cellular Systems Distinguished Lecture - "iPS Cell Technology, Gene Editing & Disease Research" - Rudolf Jaenisch, MD - Massachusetts Institute of Technology

"iPS Cell Technology, Gene Editing & Disease Research"

Rudolf Jaenisch, MD
Professor of Biology
Massachusetts Institute of Technology

Whitehead Institute - Founding Member

The recent demonstration of in vitro reprogramming using transduction of four transcription factors by Yamanaka and colleagues represents a major advance in the field. However, major questions regarding the mechanism of in vitro reprogramming need to be understood and will be one focus of the talk. A major impediment in realizing the potential of ES and iPS cells to study human diseases is the inefficiency of gene targeting. Methods based on Zn finger or TALEN mediated genome editing have allowed us to overcome the inefficiency of homologous recombination in human pluripotent cells. Using these genome editing approaches we have established efficient protocols to target expressed and silent genes in human ES and iPS cells. The most recent advance comes from the use of the CRISPR/ Cas9 system to engineer ES cells and mice. This technology allows the simultaneous editing of multiple genes and will facilitate establishing relevant models to study human disease.

We have used this technology to generate isogenic pairs of cells that differ exclusively at a disease causing mutation. The talk will describe the use of isogenic pairs of mutant and control iPS cells to establish in vitro systems for the study of diseases such as Parkinson’s and Rett syndrome.


Related Links

Additional Information

In Campus Calendar
Yes
Groups

Parker H. Petit Institute for Bioengineering and Bioscience (IBB)

Invited Audience
Undergraduate students, Faculty/Staff, Graduate students
Categories
Seminar/Lecture/Colloquium
Keywords
No keywords were submitted.
Status
  • Created By: Colly Mitchell
  • Workflow Status: Published
  • Created On: Sep 17, 2014 - 5:10am
  • Last Updated: Apr 13, 2017 - 5:21pm