*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************
"Recurrent Fusion Genes in Ovarian Cancer"
Laising Yen, PhD
Assistant Professor
Department of Pathology & Immunology
Department of Molecular and Cellular Biology
Baylor College of Medicine
Ovarian cancer is the fifth leading cause of cancer death in women. Almost 70% of ovarian cancer deaths are due to the high-grade serous subtype, which is typically detected only after it has metastasized. Characterization of high-grade serous cancer is further complicated by the significant heterogeneity and genome instability displayed by this cancer. Using high-throughput transcriptome sequencing of seven patient samples combined with experimental validation at DNA, RNA and protein levels, we identified several cancer-specific fusion genes. Among them, CDKN2D-WDFY2 occurs at a frequency of 20% among sixty high-grade serous cancer samples but is absent in non-cancerous ovary and fallopian tube samples. This is the most frequent recombinant event identified so far in high-grade serous cancer implying a major cellular lineage in this highly heterogeneous cancer. The parental gene, CDKN2D, is a cell-cycle modulator that is also involved in DNA repair, while WDFY2 is known to modulate AKT interactions with its substrates. Transfection of cloned fusion construct led to a gain of a short WDFY2 protein isoform that is presumably under the control of the CDKN2D promoter. The expression of short WDFY2 protein in transfected cells appears to alter the PI3K/AKT pathway that is known to play a role in oncogenesis. Thus CDKN2D-WDFY2 could very well represent a major cellular lineage important for detecting and classifying heterogenous ovarian carcinomas, and could provide insight into the underlying mechanism of this deadly disease. This is critical, given that ovarian cancer kills 140,200 women worldwide each year, and few ovarian cancer-specific molecular alterations are currently available for targeting and screening.