*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************
2D Kinetics and Force Regulation Study of T cell Recognition and Thymocyte Selection
Advisor:
Cheng Zhu, PhD
Committee:
Andres Garcia, PhD
Julia Babensee, PhD
Melissa Kemp, PhD
Brian Evavold (Emory)
T cell recognition and thymic selection are thought to be determined by the binding propensity (avidity or affinity) of the T cell receptor (TCR) to its ligands. However, binding propensity quantified by previous 3D TCR–pMHC kinetics such as using tetramer staining or surface plasmon resonance (SPR) under estimate TCR–pMHC interaction due to neglecting physiological conditions. Recent studies considering membrane contribution in TCR–pMHC interaction reported 2D kinetics and force regulated bond dissociation kinetics have better prediction to biological responses in CD8+ T cells.
In this study, we further tested the findings in CD4+ T cells and CD4+ CD8+ (double-positive, DP) thymocytes. We analyzed TCR–pMHC interaction for a well-characterized panel of altered peptide ligands (APLs) on multiple transgenic mouse TCR systems. Using ultrasensitive 2D mechanical assays, in situ 2D kinetic measurements show better sensitivity than the SPR 3D kinetic measurements in gauging the ligand potency and thymic selection. Furthermore, force-regulated bond lifetime of TCR–pMHC interaction amplifies the discrimination in recognition of APLs and thymic selection. When force was applied to TCR–pMHC–CD4/8 bonds, two distinct patterns emerged: agonist/negative selecting ligands formed CD4/8-dependent catch-slip bonds where lifetime first increased, reached a maximum, then decreased with increasing force, whereas antagonist/positive selecting ligands formed slip-only bonds where lifetime monotonically decreases with increasing force. Our results highlight an important role of mechanical force in ligand discrimination and suggest a new mechanism for T cell recognition and thymic selection that is distinct from previous models based on 3D measurements.