*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************
Speaker: Jennifer Tour Chayes
Distinguished Scientist and Managing Director, Microsoft Research New England in Cambridge, Massachusetts
Title: Age of Networks
Abstract: Everywhere we turn, we find that networks can be used to describe relevant interactions. In the tech industry, we see the Internet, the World Wide Web, and a variety of online social networks. In economics, we are increasingly experiencing both the positive and negative effects of a global networked economy. In epidemiology, we find disease spreading over our ever growing social networks, complicated by mutation of the disease agents. In biomedical research, we are beginning to understand the structure of gene regulatory networks, with the prospect of using this understanding to manage certain human diseases. In this talk, I look quite generally at some of the models we are using to describe these networks, processes we are studying on the networks, algorithms we have devised for the networks, and finally, methods we are developing to indirectly infer network structure from measured data. I will discuss models and techniques which cut across many disciplinary boundaries, focusing in particular on algorithms for inferring networks of relevance to cancer genomics.
Bio: Jennifer Tour Chayes is Distinguished Scientist and Managing Director of Microsoft Research New England in Cambridge, Massachusetts, which she co-founded in 2008, and Microsoft Research New York City, which she co-founded in 2012. Her research areas include phase transitions in discrete mathematics and computer science, structural and dynamical properties of self-engineered networks, and algorithmic game theory. She is the co-author of over 110 scientific papers and the co-inventor of more than 25 patents.
Chayes received her B.A. in biology and physics at Wesleyan University, where she graduated first in her class, and her Ph.D. in mathematical physics at Princeton. She did her postdoctoral work in the mathematics and physics departments at Harvard and Cornell. She is the recipient of a National Science Foundation Postdoctoral Fellowship, a Sloan Fellowship, and the UCLA Distinguished Teaching Award. Chayes has recently been the recipient of many leadership awards including the Leadership Award of Women Entrepreneurs in Science and Technology, the Leading Women Award of the Girl Scouts of Eastern Massachusetts, the Women to Watch Award of the Boston Business Journal, and the Women of Leadership Vision Award of the Anita Borg Institute. She has twice been a member of the Institute for Advanced Study in Princeton. Chayes is a Fellow of the American Association for the Advancement of Science the Fields Institute, the Association for Computing Machinery, the American Mathematical Society, and a National Associate of the National Academies.
Chayes is well known for her work on phase transitions, in particular for laying the foundation for the study of phase transitions in problems in discrete mathematics and theoretical computer science; this study is now giving rise to some of the fastest known algorithms for fundamental problems in combinatorial optimization. She is also one of the world's experts in the modeling and analysis of random, dynamically growing graphs, which are used to model the Internet, the World Wide Web and a host of other technological and social networks. Among Chayes' contributions to Microsoft technologies are the development of methods to analyze the structure and behavior of various networks, the design of auction algorithms, and the design and analysis of various business models for the online world.