ARC Colloquium: Kuang Xu, Massachusetts Institute of Technology

*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************

Event Details
  • Date/Time:
    • Monday October 28, 2013
      1:30 pm
  • Location: Klaus 1116 W
  • Phone:
  • URL:
  • Email:
  • Fee(s):
    N/A
  • Extras:
Contact

ndongi@cc.gatech.edu

Summaries

Summary Sentence: No summary sentence submitted.

Full Summary: No summary paragraph submitted.

Title: Queueing System Topologies with Limited Flexibility

Abstract: We study a multi-server model with n flexible servers and rn queues, connected through a fixed bipartite graph, where the level of flexibility is captured by the average degree, d(n), of the queues. Applications in content replication in data centers, skill-based routing in call centers, and flexible  supply chains are among our main motivations.


We focus on the scaling regime where the system size n tends to infinity, while the overall traffic intensity stays fixed. We show that a large capacity region (robustness) and diminishing queueing delay (performance) are jointly achievable even under very limited flexibility (d(n) << n). In particular, when d(n) >> ln(n), a family of random-graph-based interconnection topologies is (with high probability) capable of stabilizing all admissible arrival rate vectors (under a bounded support assumption), while simultaneously ensuring a diminishing queueing delay, of order ln(n)/d(n), as n tends to infinity. Our analysis is centered around a new class of virtual-queue-based scheduling policies that rely on dynamically constructed partial matchings on the connectivity graph. We also compare different architectures in terms of to what extend the joint objective of capacity and delay is possible.

Based on joint work with John N. Tsitsiklis.

Additional Information

In Campus Calendar
No
Groups

College of Computing, School of Computer Science, ARC

Invited Audience
No audiences were selected.
Categories
No categories were selected.
Keywords
No keywords were submitted.
Status
  • Created By: Elizabeth Ndongi
  • Workflow Status: Published
  • Created On: Sep 19, 2013 - 4:27am
  • Last Updated: Oct 7, 2016 - 10:04pm