*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************
Understanding dynamics of pattern formation, following a symmetry breaking quantum phase transition is an area of active interest. Spontaneous spin domain is formed in sodium Bose-Einstein condensates that are quenched, i.e. rapidly tuned, through a quantum phase transition from polar to antiferromagnetic phases. A microwave ``dressing'' field globally shifts the energy of the mF= 0 level below the average of the mF= ±1 energy levels, inducing a dynamical instability . We use local spin measurements to quantify the spatial ordering kinetics in the vicinity of the phase transition. For an elongated BEC, the instability nucleates small antiferromagnetic domains near the center of the polar condensate that grow in time along one spatial dimension. After a rapid nucleation and coarsening phase, the system exhibits long timescale non-equilibrium dynamics without relaxing to a uniform antiferromagnetic phase.