ARC Colloquium: Vitaly Feldman, IBM Almaden Research Center, San Jose, CA.

*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************

Event Details
  • Date/Time:
    • Wednesday May 1, 2013 - Thursday May 2, 2013
      1:00 pm - 12:59 pm
  • Location: Klaus 1116
  • Phone:
  • URL:
  • Email:
  • Fee(s):
    N/A
  • Extras:
Contact

ndongi@cc.gatech.edu

 

Summaries

Summary Sentence: No summary sentence submitted.

Full Summary: No summary paragraph submitted.

Title: Statistical Algorithms and a Lower Bound for Detecting Planted Cliques

Abstract:

We introduce a framework for proving lower bounds on computational problems over distributions, based on a class of algorithms called statistical algorithms. For such algorithms, access to the input distribution is limited to obtaining an estimate of the expectation of any given function on a sample drawn randomly from the input distribution, rather than directly accessing samples. Most natural algorithms of interest in theory and in practice, e.g., moments-based methods, local search, standard iterative methods for convex optimization, MCMC and simulated annealing, are statistical algorithms or have statistical counterparts. Our framework is inspired by and generalizes the statistical query model in learning theory.

Our main application is a nearly optimal lower bound on the complexity of any statistical algorithm for detecting planted bipartite clique distributions (or planted dense subgraph distributions) when the planted clique has size O(n^(1/2-\delta)) for any constant \delta > 0. Variants of these problems have been assumed to be hard to prove hardness for other problems and for cryptographic applications. Our lower bounds provide concrete evidence of hardness, thus supporting these assumptions.

Joint work with Elena Grigorescu, Lev Reyzin, Santosh Vempala and Ying Xiao

 

Additional Information

In Campus Calendar
No
Groups

College of Computing, School of Computer Science, ARC

Invited Audience
No audiences were selected.
Categories
No categories were selected.
Keywords
No keywords were submitted.
Status
  • Created By: Elizabeth Ndongi
  • Workflow Status: Published
  • Created On: Apr 11, 2013 - 6:53am
  • Last Updated: Oct 7, 2016 - 10:03pm