Unraveling the Biofluidynamics of Flight as an Inspiration for Design

*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************

Event Details
Contact

alison.morain@physics.gatech.edu

Summaries

Summary Sentence: Unraveling the Biofluidynamics of Flight as an Inspiration for Design

Full Summary: Many organisms fly in order to survive and reproduce

School of Physics Soft Condensed Matter & Biophysics Seminar Series: Presenting David Lentink, Stanford University

Many organisms fly in order to survive and reproduce. I am fascinated by the mechanics of flying birds, insects, and autorotating seeds. Their development as an individual and their evolution as a species are shaped by the physical interaction between organism and surrounding air. It is critical that the organism’s architecture is tuned for propelling itself and controlling its motion. Flying macroscopic animals and plants maximize performance by generating and manipulating vortices. These vortices are created close to the body as it is driven by the action of muscles or gravity, then are ‘shed’ to form a wake (a trackway left behind in the fluid). I study how the organism’s architecture is tuned to utilize the fluid dynamics of vortices. Here I link the aerodynamics of insect wings to that of bat, maple seed and bird wings. The methods used to study all these flows range from robot fly models to maple seeds flying in a vertical wind tunnel to freeze dried swift wings tested in a low turbulence wind tunnel. The study reveals that animals and plants have converged upon the same solution for generating high lift: a leading edge vortex that runs parallel to the leading edge of the wing, which it sucks upward. Why this vortex remains stably attached to flapping animal and spinning plant wings is elucidated and linked to kinematics and wing morphology. While wing morphology is quite rigid in insects and maple seeds, it is extremely fluid in birds. Here I show how such ‘wing morphing’ significantly expands the performance envelope of birds during both gliding and flapping flight. Finally I will show how these findings have inspired the design of new flapping and morphing micro air vehicles.

Related Links

Additional Information

In Campus Calendar
Yes
Groups

School of Physics

Invited Audience
No audiences were selected.
Categories
Seminar/Lecture/Colloquium
Keywords
No keywords were submitted.
Status
  • Created By: Alison Morain
  • Workflow Status: Published
  • Created On: Feb 5, 2013 - 6:42am
  • Last Updated: Oct 7, 2016 - 10:02pm