*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************
Title: The Complexity of Somewhat Approximation Resistant Predicates
Abstract:
For a Boolean predicate f on k variables, let \rho(f) be the probability that a constraint of the form f(x_1,...,x_k) is satisfied by a random assignment. A predicate f is called "somewhat approximation resistant" if for some constant \tau > \rho(f), given a \tau-satisfiable instance of the Max-k-CSP(f) problem, it is NP-hard to find an assignment that strictly beats the naive algorithm that outputs a uniformly random assignment.
Let \tau(f) denote the supremum over all \tau for which the above holds. It is known that a predicate is somewhat approximation resistant precisely when its Fourier degree is at least 3. For such predicates, we give a characterization of the "hardness gap" (\tau(f) -\rho(f)) up to a factor of O(k^5). We also give a similar characterization of the integrality gap for the natural SDP relaxation of Max-k-CSP after \Omega(n) rounds of the Lasserre hierarchy.
Joint work with Subhash Khot and Pratik Worah.