Jorge Nocedal, Northwestern University

*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************

Event Details
  • Date/Time:
    • Tuesday November 30, 2010 - Wednesday December 1, 2010
      10:00 am - 10:59 am
  • Location: Executive classroom
  • Phone:
  • URL:
  • Email:
  • Fee(s):
    N/A
  • Extras:
Contact

Renato Monteiro, ISyE
Contact Renato Monteiro
404-894-2300

Summaries

Summary Sentence: A New Optimization Method for Machine Learning and Stochastic Optimization

Full Summary: We present a "semi-stochastic" Newton method motivated by machine learning problems with very large training sets as well as by the availability of powerful distributed computing environments. The method employs sampled Hessian information to accelerate convergence and enjoys convergence guarantees. We illustrate its performance on multiclass logistic models for the speech recognition system developed at Google. An extension of the method to the sparse L1 setting as well as a complexity analysis will also be presented. This is joint work with Will Neveitt (Google), Richard Byrd (Colorado) and Gillian Chin (Northwestern).

Speaker

Professor
Director of the Computational Science Institute,
Northwestern University

Abstract

We present a "semi-stochastic" Newton method motivated by machine learning problems with very large training sets as well as by the availability of powerful distributed computing environments. The method employs sampled Hessian information to accelerate convergence and enjoys convergence guarantees. We illustrate its performance on multiclass logistic models for the speech recognition system developed at Google. An extension of the method to the sparse L1 setting as well as a complexity analysis will also be presented. This is joint work with Will Neveitt (Google), Richard Byrd (Colorado) and Gillian Chin (Northwestern).

Bio

Jorge Nocedal is a professor in the IEMS and EECS departments at Northwestern University. He obtained a BS from the National University of Mexico and a PhD from Rice University. His research interests are in optimization and scientific computing, and in their application to machine learning, computer-aided design and financial engineering. He is the author (with Steve Wright) of the book Numerical Optimization.

He is a SIAM Fellow, an ISI Highly Cited Researcher (Mathematics Category), and was an invited speaker at the 1998 International Congress of Mathematicians. He serves in the editorial board of Mathematical Programming, and in 2011 he will become editor-in-chief of SIAM Journal on Optimization. In 1998 he was appointed Bette and Neison Harris Professor of Teaching Excellence at Northwestern.

Additional Information

In Campus Calendar
No
Groups

School of Industrial and Systems Engineering (ISYE)

Invited Audience
No audiences were selected.
Categories
Seminar/Lecture/Colloquium
Keywords
machine learning, stochastic optimization
Status
  • Created By: Mike Alberghini
  • Workflow Status: Published
  • Created On: Dec 20, 2012 - 10:11am
  • Last Updated: Oct 7, 2016 - 10:01pm