*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************
Title: On-the-Go Text Entry: Evaluating and Improving Mobile Text Input on mini-QWERTY Keyboards
James Clawson
Human-Centered Computing
School of Interactive Computing
College of Computing
Georgia Institute of Technology
Date: Tuesday, October 30, 2012
Time: 1:00-4:00pm
Location: TSRB 134
Committee:
Abstract:
To date, hundreds of millions of mini-QWERTY keyboard equipped devices (miniaturized versions of a full desktop keyboard) have been sold. Accordingly, a large percentage of text messages originate from fixed-key, mini-QWERTY keyboard enabled mobile phones. In this dissertation, I present ways to improve text messaging on mini-QWERTY keyboard enabled mobile phones through the use of an automatic error correction algorithm. Over a series of three longitudinal studies I quantify how quickly and accurately individuals can input text on mini-QWERTY keyboards. I evaluate performance in ideal laboratory conditions as well as in a variety of mobile contexts. My first study establishes baseline performance measures; my second study investigates the impact of limited visibility on text input performance; and my third study investigates the impact of mobility (sitting, standing, and walking) on text input performance. After approximately five hours of practice, participants achieved expertise typing almost 60 words-per-minute at almost 95% accuracy. Upon completion of these studies, I examine the types of errors that people make when typing on mini-QWERTY keyboards. Having discovered a common pattern in errors, I develop and refine an algorithm to automatically detect and correct errors in mini-QWERTY keyboard enabled text input. I both validate the algorithm through the analysis of pre-recorded typing data and then empirically evaluate the impacts of automatic error correction on live mini-QWERTY keyboard text input. Validating the algorithm over various datasets, I demonstrate the potential to correct approximately a 25% of the total errors and correct up to 3% of the total keystrokes. Evaluating automatic error detection and correction on live typing results in successfully correcting 60.80% of the off-by-one errors committed by participants while increasing typing rates by almost 2 words-per-minute without introducing any distraction.