Bioengineering Seminar Series

*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************

Event Details
  • Date/Time:
    • Thursday October 4, 2012 - Friday October 5, 2012
      11:00 am - 11:59 am
  • Location: Parker H. Petit Institute for Bioengineering & Bioscience, Suddath Seminar Rm 1128
  • Phone: (404) 894-6228
  • URL: http://www.ibb.gatech.edu
  • Email: laplaca@gatech.edu
  • Fee(s):
    N/A
  • Extras:
Contact

Michelle C. LaPlaca, PhD, faculty host

Summaries

Summary Sentence: Study of Blast Induced Neurotrauma Using Experimental and Simulation Methods. Namas Chandra, PhD - University of Nebraska-Lincoln

Full Summary: The Bioengineering Seminar Series is a joint seminar series between IBB and the BME department. Seminars are held on Tuesdays or Thursdays between 11am-12pm in IBB room 1128 unless otherwise indicated.

Media
  • Namas Chandra Namas Chandra
    (image/jpeg)
  • Bioengineering Seminar Series Bioengineering Seminar Series
    (image/png)

"Study of Blast Induced Neurotrauma Using Experimental and Simulation Methods."

Namas Chandra, PhD
University of Nebraska-Lincoln 

Blasts from mines and improvised explosive devices (IEDs) inflict majority of mortality and injuries to warfighters and innocent bystanders. Blast-shock waves cause mild to moderate to severe blast induced neurotrauma (BINT) in acute and chronic stages. The basic mechanics of shock-(bio) structure interaction and the mechanisms of damage are not known. To understand the interaction of blast on the head/brain complex; to identify the mechanisms of injury; to examine the role of protective systems on injury; to provide better diagnostic, prognostic and therapeutic tools, shock tubes are extensively used in the laboratory to simulate the field conditions. By detailing the results from a series of careful experiments (field explosions and shock tubes) and numerical simulations, we demonstrate that 1) blast profiles continuously evolve along the length of the tube,  2) blast tubes can replicate primary field conditions in a narrow test region 4) shock-blast waves interact with structural and biological media very differently,  5) helmet material and geometry play a critical role in protecting or otherwise,  and 6) studies using animal models/cadavers/test dummies/single neurons provide great insight into the biomechanical loadings and post-injury biochemical and pathophysiological (e.g. break down of blood-brain barrier, neuronal plasma damage) sequelae. Other effects of blasts including under body effects are also presented.

Related Links

Additional Information

In Campus Calendar
Yes
Groups

Parker H. Petit Institute for Bioengineering and Bioscience (IBB)

Invited Audience
No audiences were selected.
Categories
Seminar/Lecture/Colloquium
Keywords
BioE Seminar, Bioengeneering Seminar Series, IBB, Namas Chandra
Status
  • Created By: Karen Cannon
  • Workflow Status: Published
  • Created On: Sep 28, 2012 - 11:28am
  • Last Updated: Oct 7, 2016 - 10:00pm