*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************
Entropy can order shapes into complex structures, even in the absence of explicit attractive forces. As such, shape is important in the self assembly and crystallization of colloids, nanoparticles, proteins and viruses, and in the packing of granular matter. Using computer simulations of nearly 200 different hard polyhedra, including families of tetrahedra, we demonstrate the emergence of entropic bonds and show how simple measures of building block shape and local order in fluid phases can predict crystals and quasicrystals, liquid crystals, rotator crystals, and glasses. From these findings, we propose design rules for entropically patchy particles.