*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************
Title: Techniques to Facilitate Symbolic Execution of Real-world Programs
Saswat Anand
School of Computer Science
College of Computing
Georgia Institute of Technology
When: May 04 Friday 11AM
Where: KACB 2108
Committee:
Summary:
The overall goal of this research is to reduce the cost of software development and improve the quality of software. Symbolic execution is a program-analysis technique that is used to address several problems that arise in developing high-quality software. Despite the fact that the symbolic execution technique is well understood, and performing symbolic execution on simple programs is straightforward, it is still not possible to apply the technique to the general class of large, real-world software. A symbolic-execution system can be effectively applied to large, real-world software if it has at least the two features: efficiency and automation. However, efficient and automatic symbolic execution of real-world programs is a lofty goal because of both theoretical and practical reasons. Theoretically, achieving this goal requires solving an intractable problem (i.e., solving constraints). Practically, achieving this goal requires overwhelming effort to implement a symbolic-execution system that can precisely and automatically symbolically execute real-world programs.
This research makes three major contributions.
1. Three new techniques that address three important problems of symbolic execution. Compared to existing techniques, the new techniques
2. A novel approach that uses symbolic execution to generate test inputs for Apps that run on modern mobile devices such as smartphones and tablets.
3. Implementations of the above techniques and empirical results obtained from applying those techniques to real-world programs that demonstrate their effectiveness.