IceCube Neutrino Observatory Explores Origin of Cosmic Rays

*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************

Georgia Tech physicist contributes to study of gamma ray bursts

Contact

John Toon

Research News & Publications Office

jtoon@gatech.edu

(404) 894-6986

Sidebar Content
No sidebar content submitted.
Summaries

Summary Sentence:

The IceCube Neutrino Observatory is helping study the origins of gamma ray bursts.

Full Summary:

In a paper published in the journal Nature, scientists using data from the IceCube Neutrino Observatory describe a search for neutrinos emitted from 300 gamma ray bursts. The study's findings contradict 15 years of predictions and challenge one of the leading theories for the origin of the highest energy cosmic rays.

Media
  • IceCube Observatory IceCube Observatory
    (image/jpeg)
  • Ignacio Taboada Ignacio Taboada
    (image/jpeg)

Although cosmic rays were discovered 100 years ago, their origin remains one of the most enduring mysteries in physics. Now, the IceCube Neutrino Observatory, a massive detector in Antarctica, is honing in on how the highest energy cosmic rays are produced.

Cosmic rays are electrically charged particles, such as protons, that strike Earth from all directions, with energies up to one hundred million times higher than those created in man-made accelerators. The intense conditions needed to generate such energetic particles have focused physicists’ interest on two potential sources: the massive black holes at the centers of active galaxies, and the exploding fireballs observed by astronomers as gamma ray bursts (GRBs).

IceCube is using neutrinos, which are believed to accompany cosmic ray production, to explore these theories. In a paper published in the April 19 issue of the journal Nature, the IceCube collaboration – which includes a Georgia Institute of Technology scientist -- describes a search for neutrinos emitted from 300 gamma ray bursts observed, most recently in coincidence with the SWIFT and Fermi satellites, between May 2008 and April 2010. Surprisingly, they found none - a result that contradicts 15 years of predictions and challenges one of the two leading theories for the origin of the highest energy cosmic rays.

“The result of this neutrino search is significant because for the first time we have an instrument with sufficient sensitivity to open a new window on cosmic ray production and the interior processes of GRBs,” said IceCube spokesperson and University of Maryland physics professor Greg Sullivan. “The unexpected absence of neutrinos from GRBs has forced a re-evaluation of the theory for production of cosmic rays and neutrinos in a GRB fireball and possibly the theory that high energy cosmic rays are generated in fireballs.”

IceCube is a high energy neutrino telescope at the geographical South Pole in Antarctica, operated by a collaboration of 250 physicists and engineers from the United States, Germany, Sweden, Belgium, Switzerland, Japan, Canada, New Zealand, Australia and Barbados. The IceCube Neutrino Observatory was built under a National Science Foundation (NSF) Major Research Equipment and Facilities Construction grant, with assistance from partner funding agencies around the world. The NSF Office of Polar Programs continues to support the project with a maintenance and operations grant. Construction was finished in December 2010.

“One of the main objectives of IceCube is to search for the sources of the highest energy cosmic rays,” explained Ignacio Taboada, an assistant professor in the Georgia Tech School of Physics who has been involved in IceCube since its planning stages. “Gamma ray bursts have always been high on the list of potential sources for cosmic rays. Though not completely ruled out, the mechanisms by which GRBs could produce these cosmic rays are now significantly constrained by these results. We will keep looking for the sources, and our chances of finding them will increase as we accumulate more data to improve our sensitivity.”

IceCube observes neutrinos by detecting the faint blue light produced in neutrino interactions in ice. Neutrinos are of a ghostly nature; they can easily travel through people, walls, or the planet Earth. To compensate for the antisocial nature of neutrinos and detect their rare interactions, IceCube is built on an enormous scale. One cubic kilometer of glacial ice, enough to fit the great pyramid of Giza 400 times, is instrumented with 5,160 optical sensors embedded up to 2.5 kilometers deep in the ice.

GRBs, the universe’s most powerful explosions, are usually first observed by satellites using X-rays and/or gamma rays. GRBs are seen about once per day, and are so bright that they can be seen from half way across the visible universe. The explosions usually last only a few seconds, and during this brief time they can outshine everything else in the universe.

“Although we have not discovered where cosmic rays come from, we have taken a major step towards ruling out one of the leading predictions,” said IceCube principal investigator and University of Wisconsin - Madison physics professor Francis Halzen.

Improved theoretical understanding and more data from the compete IceCube detector will help scientists better understand the mystery of cosmic ray production. IceCube is currently collecting more data with the finalized, better calibrated, and better understood detector.

For more information about IceCube, visit www.icecube.wisc.edu.

 

Additional Information

Groups

Research Horizons

Categories
Physics and Physical Sciences
Related Core Research Areas
No core research areas were selected.
Newsroom Topics
No newsroom topics were selected.
Keywords
College of Sciences, cosmic ray, gamma ray, gamma ray burst, IceCube Observatory, Ignacio Taboada, neutrino, School of Physics
Status
  • Created By: John Toon
  • Workflow Status: Published
  • Created On: Apr 18, 2012 - 8:59am
  • Last Updated: Oct 7, 2016 - 11:12pm