Statistics Seminar

*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************

Event Details
  • Date/Time:
    • Thursday April 26, 2012 - Friday April 27, 2012
      3:00 pm - 3:59 pm
  • Location: ISyE Executive Classroom
  • Phone:
  • URL:
  • Email:
  • Fee(s):
    N/A
  • Extras:
Contact
Host: Dr. Roshan Vengazhiyil <roshan@isye.gatech.edu>
Summaries

Summary Sentence: Statistics Seminar

Full Summary: No summary paragraph submitted.

TITLE: The Effect of Omitted Variables in the Multilevel Mediation Model

SPEAKER: Professor Davood Tofighi, GT School of Psychology

ABSTRACT:

Mediational analysis is a statistical approach that examines the effect of treatment (e.g., prevention) on an outcome (e.g., substance use) achieved by targeting and changing one or more intervening variable(s) (e.g., risk and protective factors such as peer drug use norms). Multilevel (mixed model) mediation analysis examines the indirect effect of an independent variable on an outcome achieved by targeting and changing an intervening variable (mediator) in clustered (multilevel) data. We study analytically and through simulation the effects of an omitted variable at Level 2 (cluster level) on a 1-1-1 multilevel mediation model for a randomized experiment conducted within clusters in which the treatment, mediator, and outcome are all measured at Level 1 (individuals). When the residuals in the equations for the mediator and the outcome variables are fully orthogonal, the two methods of calculating the indirect effect (ab, c – c' ) are equivalent at the between- and within-cluster levels. Omitting a variable at Level 2 changes the interpretation of the indirect effect and will induce correlations between the random intercepts or random slopes. The equality of within-cluster ab and c – c' no longer holds. Correlation between random slopes implies that the within-cluster indirect effect is conditional, interpretable at the grand mean level of the omitted variable.

Additional Information

In Campus Calendar
No
Groups

School of Industrial and Systems Engineering (ISYE)

Invited Audience
No audiences were selected.
Categories
Seminar/Lecture/Colloquium
Keywords
No keywords were submitted.
Status
  • Created By: Anita Race
  • Workflow Status: Published
  • Created On: Apr 16, 2012 - 11:29am
  • Last Updated: Oct 7, 2016 - 9:58pm