Sharon Norman - Ph.D. Proposal

*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************

Event Details
  • Date/Time:
    • Friday March 16, 2012 - Saturday March 17, 2012
      1:30 pm - 3:59 pm
  • Location: Rollins Research Center 2052, Emory University
  • Phone:
  • URL:
  • Email:
  • Fee(s):
    N/A
  • Extras:
Contact

Mr. Chris Ruffin

Summaries

Summary Sentence: The effects of period noise and fixed point topology on hybrid neural circuit synchronization

Full Summary: "The effects of period noise and fixed point topology on hybrid neural circuit synchronization"

Robert J. Butera, PhD (advisor), Georgia Institute of Technology and Emory University

Carmen C. Canavier, PhD, Louisiana State University Health Sciences Center
Robert H. Clewley, PhD, Georgia State University
Astrid A. Prinz, PhD, Emory University
Garrett B. Stanley, PhD, Georgia Institute of Technology and Emory University

 

Synchronization of neural signals is important for function of the nervous system, and the disruption of synchronized or phase locked network activity is implicated in disorders like schizophrenia. In this proposal, we use two-cell computational models and hybrid circuits of one biological and one model neuron to investigate synchronization and phase locking in small networks. We propose to characterize period drift in biological neurons to determine how robust circuits must be to counteract this drift and to identify how coupled system dynamics change in the presence of biological drift. We will quantify how the number of fixed points in the coupled system affects the network's ability to withstand perturbations. Finally, we will determine how the shape of the system's interaction curves and the number of system fixed points affect the stability of synchronized or phase locked behavior and the convergence time back to this phase relationship after perturbation. Understanding the conditions conducive to network synchrony will give us a general framework for how networks establish and destroy oscillatory activity; such activity is thought to be important for the creation and retrieval of memories, and may give insight into diseases that possess characteristic disruptions in phase locked or synchronous activity.

Additional Information

In Campus Calendar
No
Groups

Bioengineering Graduate Program

Invited Audience
No audiences were selected.
Categories
Other/Miscellaneous
Keywords
bioengineering
Status
  • Created By: Chris Ruffin
  • Workflow Status: Published
  • Created On: Mar 5, 2012 - 10:32am
  • Last Updated: Oct 7, 2016 - 9:58pm