Nanorod-Assembled Order Affects Diffusion Rate and Direction

*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************

Three-dimensional computer simulations reveal diffusional behavior

Contact

Jason Maderer
Georgia Tech Media Relations
404-385-2966
maderer@gatech.edu

Sidebar Content
No sidebar content submitted.
Summaries

Summary Sentence:

New reasearch focuses on the movements of a spherical probe amongst static needles.

Full Summary:

Professor Rigoberto Hernandez, School of Chemistry and Biochemistry, studied the movements of a spherical probe amongst static nanorods. He found that the particles sometimes diffused faster in a nematic environment than in a disordered environment. That is, the channels left open between the ordered nanorods don’t just steer nanoparticles along a direction, they also enable them to speed right through.

Media
  • Diffusion of Spherical Probe through Static Nematogens Diffusion of Spherical Probe through Static Nematogens
    (image/jpeg)
  • Rigoberto Hernandez Rigoberto Hernandez
    (image/jpeg)
  • Rigoberto Hernandez 2 Rigoberto Hernandez 2
    (image/jpeg)

Some of the recent advancements in nanotechnology depend critically on how nanoparticles move and diffuse on a surface or in a fluid under non-ideal to extreme conditions. Georgia Tech has a team of researchers dedicated to advancing this frontier. 

Rigoberto Hernandez, a professor in the School of Chemistry and Biochemistry, investigates these relationships by studying three-dimensional particle dynamics simulations on high-performance computers. His new findings, which focus on the movements of a spherical probe amongst static needles, have landed on the cover of February’s The Journal of Physical Chemistry B.

Hernandez and his former Ph.D. student, Ashley Tucker, assembled the rodlike scatterers in one of two states during his simulations: disordered (isotropic) and ordered (nematic). When the nanorods were disordered, pointing in various directions, Hernandez found that a particle typically diffused uniformly in all directions. When every rod pointed in the same direction, the particle, on average, diffused more in the same direction as the rods than against the grain of the rods.  In this nematic state, the probe’s movement mimicked the elongated shape of the scatterers. The surprise was that the particles sometimes diffused faster in the nematic environment than in the disordered environment. That is, the channels left open between the ordered nanorods don’t just steer nanoparticles along a direction, they also enable them to speed right through.

As the density of the scatterers is increased, the channels become more and more crowded. The particle diffusing through these increasingly crowded assemblies slows down dramatically in the simulation. Nevertheless, the researchers found that the nematic scatterers continued to accommodate faster diffusion than disordered scatterers.

“These simulations bring us a step closer to creating a nanorod device that allows scientists to control the flow of nanoparticles,” said Hernandez. “Blue-sky applications of such devices include the creation of new light patterns, information flow and other microscopic triggers.”

For example, if scientists need a probe to diffuse in a specific direction at a particular speed, they could trigger the nanorods to move into a specified direction. When they need to change the particle’s direction, scatterers could then be triggered to rearrange into a different direction. Indeed, the trigger could be the absence of sufficient nanoparticles in a given part of the device. The ensuing reordering of the nanorods would then drive a repopulation of nanoparticles that would then be available to perform a desired action, such as to stimulate light flow.

“While this NSF-funded work to better understand the motion of particles within complex arrays at the nanoscale is very fundamental,” Hernandez says, “it has significant long-term implications on device fabrication and performance at such scales. It’s fun to think about and provides great training for my students.”

This project is supported by the National Science Foundation (NSF) (Award Numbers CHE-0749580 and CHE-0946869). The content is solely the responsibility of the principal investigators and does not necessarily represent the official views of the NSF.

 

 

Additional Information

Groups

Home

Categories
Nanotechnology and Nanoscience, Research
Related Core Research Areas
No core research areas were selected.
Newsroom Topics
No newsroom topics were selected.
Keywords
Chemistry and Biochemistry, Nanotechnology
Status
  • Created By: Jason Maderer
  • Workflow Status: Published
  • Created On: Feb 6, 2012 - 5:10am
  • Last Updated: Oct 7, 2016 - 11:11pm