Researchers Describe First Functioning "Lipidome" of Mouse Macrophage

*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************

Contact
School of Biology
Biology
Contact School of Biology
404-894-3700
Sidebar Content
No sidebar content submitted.
Summaries

Summary Sentence:

Researchers Describe First Functioning "Lipidome" of Mouse Macrophage

Full Summary:

For the first time, scientists have described not only the identities and quantities of fat species in a living mammalian cell - in this case, a mouse macrophage or white blood cell - but they also report how these lipids react and change over time to a bacterial stimulus triggering the cell's immune response.

Media

For the first time, scientists have described not only the identities and quantities of fat species in a living mammalian cell - in this case, a mouse macrophage or white blood cell - but they also report how these lipids react and change over time to a bacterial stimulus triggering the cell's immune response.

Writing in the December 17 issue of the /Journal of Biological Chemistry/, lead author Edward A. Dennis, PhD, distinguished professor of pharmacology, chemistry and biochemistry at the University of California San Diego School of Medicine, said the work culminates more than seven years of effort by scientists in LIPID MAPS, a national consortium of 12 research laboratories at nine "core" universities, medical research institutes and life sciences companies collaborating to study the structure and function of lipids. The laboratory of Dr. Al Merrill (School of Biology, Georgia Tech) was responsible for the sphingolipid analyses and characterization carried out by the consortium.

"This paper is the essence of what we originally proposed," said Dennis. "This is our big, initial study, though we’ve published many other papers and have more in the pipeline." All nine core facilities in LIPID MAPS participated in the study.

Until relatively recently, lipid research has not received the same degree of attention as, say, genes or proteins. But fats are indisputably crucial to cell operations and overall health. Lipids represent major structural and metabolic components of cells and perform essential functions, such as membrane construction, energy production and intracellular communications.

"They’re also a key in virtually all diseases," said Dennis. "Any condition involving inflammation involves lipids. It’s hard to think of a disease, including cancer, in which lipids don’t play some role."

Likewise for the subject of the research: the mouse macrophage.

"It would have been simpler to do this with yeast or bacteria," said Dennis, "but the macrophage is found in every kind of mammalian tissue (under different names). It’s a major player in the immune system."

Moreover, scientists were able to study natural macrophages obtained from a live, well-established mouse model, rather than relying upon cultured cells. The model could also be genetically modified to test various hypotheses.

Dennis said the findings lay the foundation for on-going and future projects to eventually produce a human "lipidome," a complete inventory of all fat species in the human body and how they work together.

"We only have three more years of the LIPID MAPS project," Dennis said. "But this is really just the beginning."

Co-authors of the paper are Raymond A. Deems of the Department of Chemistry and Biochemistry at UC San Diego; Richard Harkewicz of Department of Pharmacology, UC San Diego School of Medicine; Oswald Quehenberger and Gary Hardiman of UCSD’s Department of Medicine, School of Medicine; H. Alex Brown, Stephen B. Milne and David S. Myers of the Department of Pharmacology, Vanderbilt University School of Medicine; Christopher K. Glass of the UCSD’s Department of Medicine and Department of Cellular and Molecular Medicine, School of Medicine; Donna Reichart of UCSD’s Department of Cellular and Molecular Medicine, School of Medicine; Alfred H. Merrill, Jr., M. Cameron Sullards and Elaine Wang of the Schools of Biology, Chemistry and Biochemistry and the Petit Institute of Bioengineering and Bioscience at Georgia Institute of Technology; Robert C. Murphy of the Department of Pharmacology, University of Colorado Denver; Christian R.H. Raetz, Teresa Garrett, Ziqiang Guan and Andrea C. Ryan of Department of Biochemistry, Duke University Medical Center; David W. Russell, Jeffrey G. McDonald and Bonne M. Thompson of Department of Molecular Genetics, University of Texas Southwestern Medical Center; Walter A. Shaw of Avanti Polar Lipids, Inc; Manish Sud, Yihua Zhao, Shakti Gupta, Mano R. Maurya and Eoin Fahy of the San Diego Supercomputer Center and Shankar Subramaniam of Department of Chemistry and Biochemistry, the Department of Cellular and Molecular Medicine and the San Diego Supercomputer Center, all at UC San Diego.

Funding for this project was provided by the National Institute of General Medical Sciences’ Large Scale Collaborative "Glue" grant.

Related Links

Additional Information

Groups

School of Biological Sciences

Categories
No categories were selected.
Related Core Research Areas
No core research areas were selected.
Newsroom Topics
No newsroom topics were selected.
Keywords
No keywords were submitted.
Status
  • Created By: Troy Hilley
  • Workflow Status: Published
  • Created On: Dec 20, 2010 - 8:00pm
  • Last Updated: Oct 7, 2016 - 11:11pm